首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1646篇
  免费   87篇
  国内免费   25篇
化学   1039篇
晶体学   4篇
力学   92篇
数学   259篇
物理学   364篇
  2024年   4篇
  2023年   13篇
  2022年   55篇
  2021年   43篇
  2020年   78篇
  2019年   55篇
  2018年   58篇
  2017年   47篇
  2016年   105篇
  2015年   83篇
  2014年   103篇
  2013年   141篇
  2012年   144篇
  2011年   152篇
  2010年   107篇
  2009年   72篇
  2008年   68篇
  2007年   78篇
  2006年   75篇
  2005年   45篇
  2004年   50篇
  2003年   37篇
  2002年   36篇
  2001年   20篇
  2000年   8篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   10篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1987年   2篇
  1986年   2篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1930年   1篇
  1925年   1篇
排序方式: 共有1758条查询结果,搜索用时 328 毫秒
101.
A high effective electron mobility of 33 cm2 V–1 s–1 was achieved in solution‐processed undoped zinc oxide (ZnO) thin films. The introduction of silicon nitride (Si3N4) as growth substrate resulted in a mobility improvement by a factor of 2.5 with respect to the commonly used silicon oxide (SiO2). The solution‐processed ZnO thin films grown on Si3N4, prepared by low‐pressure chemical vapor deposition, revealed bigger grain sizes, lower strain and better crystalline quality in comparison to the films grown on thermal SiO2. These results show that the nucleation and growth mechanisms of solution‐processed films are substrate dependent and affect the final film structure accordingly. The substantial difference in electron mobilities suggests that, in addition to the grain morphology and crystalline structure effects, defect chemistry is a contributing factor that also depends on the particular substrate. In this respect, interface trap densities measured in high‐κ HfO2/ZnO MOSCAPs were about ten times lower in those fabricated on Si3N4 substrates. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)

  相似文献   

102.
We introduce a multiscale scheme for sampling scattered data and extending functions defined on the sampled data points, which overcomes some limitations of the Nyström interpolation method. The multiscale extension (MSE) method is based on mutual distances between data points. It uses a coarse-to-fine hierarchy of the multiscale decomposition of a Gaussian kernel. It generates a sequence of subsamples, which we refer to as adaptive grids, and a sequence of approximations to a given empirical function on the data, as well as their extensions to any newly-arrived data point. The subsampling is done by a special decomposition of the associated Gaussian kernel matrix in each scale in the hierarchical procedure.  相似文献   
103.
Gas sensing is one of the most promising applications for graphene. Using molecular dynamics simulation method, adsorption isotherm of xenon (Xe) gas on defected and perfect graphene is studied in order to investigate sensing properties of graphene for Xe gas. In this method, first generation of Brenner many-body potential is used to simulate the interaction of carbon–carbon (C) atoms in graphene, and Lennard–Jones two-body potential is used to simulate interaction of Xe–Xe and Xe–C atoms. In the simulated systems, adsorption coverage, radial distribution function, heat of adsorption, binding energy and specific heat capacity at constant volume are calculated for several temperatures between 90 K and 130 K, and various pressures. It was found that both of the defected and perfect graphene could be introduced as very good candidates for adsorption of Xe gas.  相似文献   
104.
Motivated by the theory of self‐duality that provides a variational formulation and resolution for non‐self‐adjoint partial differential equations (Ann. Inst. Henri Poincaré (C) Anal Non Linéaire 2007; 24 :171–205; Selfdual Partial Differential Systems and Their Variational Principles. Springer: New York, 2008), we propose new templates for solving large non‐symmetric linear systems. The method consists of combining a new scheme that simultaneously preconditions and symmetrizes the problem, with various well‐known iterative methods for solving linear and symmetric problems. The approach seems to be efficient when dealing with certain ill‐conditioned, and highly non‐symmetric systems. The numerical and theoretical results are provided to show the efficiency of our approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
105.
106.
We investigate a photonic crystal (PC) waveguide coupler which is formed by two closely spaced linear waveguides in a two-dimensional triangular lattice of air holes. Our study shows that shifting one row of the air holes between the waveguides affects the dispersion curves of the guided modes and if the triangular lattice of air holes between the waveguides is replaced by a rectangular lattice, this modification results in an ultra-short coupling structure with coupling length less than 3a, where a is the lattice constant. Also, we investigate the effect of changing the radii of air holes that are adjacent to or between the waveguides on the coupling length and show that increasing the radius of air holes between the waveguides decreases the coupling length. We analyze the output spectrum of an ultra-short channel drop filter designed based on this structure.  相似文献   
107.
108.
109.
The synthesis and structure of a new chiral bidentate imidazolinylidene ligand and a derived chiral Ru-based carbene are disclosed. The Ru complex is stereogenic at the metal center; it can be prepared in >98% diastereoselectivity and purified by silica gel chromatography with undistilled solvents. The air-stable Ru complex efficiently catalyzes ring-closing and ring-opening metathesis and is recyclable. The chiral complex is highly effective (0.5-10 mol % loading) in promoting enantioselective ring-opening/cross metathesis reactions (up to >98% ee). These enantioselective transformations can be effected in air, with unpurified solvent and with substrates that would only polymerize with Mo-based catalysts.  相似文献   
110.
In achieving significant speed-up on parallel machines, a major obstacle is the overhead associated with synchronizing the concurrent processes. This paper presents high-orderparallel asynchronous schemes, which are schemes that are specifically designed to minimize the associated synchronization overhead of a parallel machine in solving parabolic PDEs. They are asynchronous in the sense that each processor is allowed to advance at its own speed. Thus, these schemes are suitable for single (or multi) user shared memory or (message passing) MIMD multiprocessors. Our approach is demonstrated for the solution of the multidimensional heat equation, of which we present a spatial second-order Parametric Asynchronous Finite-Difference (PAFD) scheme. The well-known synchronous schemes are obtained as its special cases. This is a generalization and expansion of the results in [5] and [7]. The consistency, stability and convergence of this scheme are investigated in detail. Numerical tests show that although PAFD provides the desired order of accuracy, its efficiency is inadequate when performed on each grid point.In an alternative approach that uses domain decomposition, the problem domain is divided among the processors. Each processor computes its subdomain mostly independently, while the PAFD scheme provides the solutions at the subdomains' boundaries. We use high-order finite-difference implicit scheme within each subdomain and determine the values at subdomains' boundaries by the PAFD scheme. Moreover, in order to allow larger time-step, we use remote neighbors' values rather than those of the immediate neighbors. Numerical tests show that this approach provides high efficiency and in the case which uses remote neighbors' values an almost linear speedup is achieved. Schemes similar to the PAFD can be developed for other types of equations [3].This research was supported by the fund for promotion of research at the Technion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号