Polymers of diphenylamine-2-carboxylic acid are synthesized for the first time via chemical oxidative polymerization. The effects of the concentration of reagents, their ratio, and the temperature and time of reaction on the yield and chemical structure of poly(diphenylamine-2-carboxylic acid) are studied by IR and UV spectroscopy. It is shown that the growth of polymer chains proceeds through the C-C addition in the para position of phenyl rings relative to nitrogen. During the thermal oxidation of poly(diphenylamine-2-carboxylic acid), COOH groups and dopant molecules are successively eliminated; with a further increase in temperature, the polymer behaves as polydiphenylamine. The main processes of thermooxidative degradation of poly(diphenylamine-2-carboxylic acid) begin at 570°C. This value is 120°C higher than the corresponding parameter in the case of polydiphenylamine. 相似文献
The free radical copolymerization of (5-bromo-1-Benzofuran-2-yl)(phenyl)-O-methacrylketoxime (BPMKO) with 2-(4-acetylphenoxy)-2-oxoethyl-2-methylacrylate(AOEMA) has been carried out in 1, 4-dioxane at 65°C ± 1 and was analyzed by Fourier transform infrared, 1H-NMR, 13C-NMR and gel permeation chromatography. Elemental analysis was used to determine the molar fractions of BPMKO and AOEMA in the copolymers. The monomer–reactivity ratios were calculated according to the general copolymerization equation using Kelen-Tüdõs and Finemann-Ross linearization methods. The reactivity ratios indicated a tendency toward random copolymerization. The polydispersity indices of the polymers were determined by gel permeation chromatography and suggested a strong tendency for chain termination by disproportionation. The thermal behaviors of copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The glass-transition temperature of the copolymers increased with increasing BPMKO content in the copolymers. All the products showed moderate activity against different strains of bacteria and fungi. 相似文献
In this study, for the first time a model electrochemical kit was constructed for the detection of a functional polymorphism in catechol‐O‐methyl transferase (COMT) gene which is important for diagnosis of neuropsychiatric disorders as Alzheimer disease. The disposable pencil graphite electrode (PGE) is designed as a “kit” and the probe DNA covered PGE can detect single nucleotide polymorphisms (SNPs) from real samples based on the guanine oxidation signal even after 5 months of kit preparation (150 days durability).The detection limit (S/N=3) of the biosensor was calculated as 1.18 pmol of synthetic target sequence and 6.09×105 molecules of real samples in 30 min detection time. 相似文献
A RP-LC method is presented, which is sensitive and selective for the simultaneous determination of enalapril–lercanidipine and enalapril–nitrendipine binary mixtures in their pharmaceutical dosage forms. The analyte peaks were detected using the LC method with the mobile phase ratio of methanol: water (70:30 v/v, pH 3.0) and a 1.0 mL min−1 flow rate. The detection wavelength was selected at 210 nm using photo diode array detector and column temperature was optimized to 30 °C. Linearity was obtained at different concentration ranges for all working pharmaceutically active compounds between 0.5 and 25 μg mL−1. The proposed methods were extensively validated according to USP 27 requirements and ICH guidelines. The methods were applied to the analysis of pharmaceutical dosage forms containing binary mixtures of enalapril–lercanidipine and enalapril–nitrendipine. Moreover, the proposed methods were applied for the degradation studies of the selected compounds. Degradation studies were conducted using stress conditions such as UV light, acidic and alkaline hydrolysis, oxidation and heat in oven, to evaluate the ability of the separation of the response of standard compounds from their degradation products.
We present a novel sensing scheme for detecting the effects of unburned fossil fuels by integrating microarray technology and dielectrophoresis to develop single-neuron arrays. These arrays have the capability to sense and identify the two fuels, at parts per billion (ppb) concentrations, as well to determine the associated physiological changes at the single-cell level. Identification is achieved through frequency domain analysis of the measured changes to the extracellular electrical activity due to the effect of the fossil fuels. This yields unique electrical identifiers known as "signature patterns". Simultaneous optical visualization to the physiological changes is obtained by specific fluorescent staining. The correlation between the signature patterns and the cellular biological behavior establishes the veracity of this identification technique. 相似文献
The chemical oxidative polymerization of aniline in a heterophase system is studied. In the presence of a solid substrate, the aniline polymerization involves two kinetically and chemically independent processes, namely, the polymerization in the bulk solution and at the substrate surface. The growth of the polyaniline coating at the substrate surface includes three successive processes: interfacial polymerization, adsorptive polymerization, and destruction of the polymer chain. The interfacial oxidative polymerization of diphenylamine and phenothiazine is examined. The yield and chemical structure of polymers is shown to depend on the polymerization conditions. 相似文献
A rapid, sensitive, and specific reverse phase high performance liquid chromatography with diode array detection procedure for the simultaneous determination of abacavir, efavirenz and valganciclovir in spiked human serum is described. Separation was performed on a 5 μm Waters Spherisorb column (250 × 4.6 mm ID) with acetonitrile: methanol:KH2PO4 (at pH 5.00) (40:20:40 v/v/v) isocratic elution at a flow rate of 1.0 mL min−1. Calibration curves were constructed in the range of 50–30,000 ng mL−1 for abacavir and efavirenz, and 10–30,000 ngmL−1 for valganciclovir in serum samples. The limit of detection and limit of quantification concentrations of the HPLC method were 3.80 and 12.68 ng mL−1 for abacavir, 2.61 and 8.69 ng mL−1 for efavirenz, 1.30 and 4.32 ng mL−1 for valganciclovir. The method has been applied, without any interference from excipients or endogenous substances, for the simultaneous determination of these three compounds in human serum.