首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   29篇
  国内免费   2篇
化学   356篇
晶体学   1篇
力学   18篇
数学   75篇
物理学   91篇
  2023年   8篇
  2022年   9篇
  2021年   24篇
  2020年   19篇
  2019年   17篇
  2018年   15篇
  2017年   7篇
  2016年   30篇
  2015年   22篇
  2014年   16篇
  2013年   27篇
  2012年   38篇
  2011年   35篇
  2010年   23篇
  2009年   23篇
  2008年   38篇
  2007年   38篇
  2006年   27篇
  2005年   33篇
  2004年   19篇
  2003年   20篇
  2002年   14篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1978年   1篇
  1957年   1篇
  1940年   1篇
  1935年   3篇
  1906年   1篇
排序方式: 共有541条查询结果,搜索用时 15 毫秒
121.
The kinetics and mechanisms of thermal decomposition of phenyl acetate and p-tolyl acetate in the gas phase were studied by means of electronic structure calculations using density functional theory methods: B3LYP/6-31G(d,p), B3LYP/6-31++G(d,p), B3PW91/6-31G(d,p), B3PW91/6-31++G(d,p), MPW1PW91/6-31G(d,p), MPW1PW91/6-31++G(d,p), PBE/6-31G(d,p) and PBE/6-31++G(d,p). Two possible mechanisms have been considered: mechanism A is a stepwise process involving electrocyclic [1,5] hydrogen shift to eliminate ketene through concerted six-membered cyclic transition-state structure, followed by tautomerisation of cyclohexadienone or by 4-methyl cyclohexadienone intermediate to give the corresponding phenol. Mechanism B is a one-step concerted [1,3] hydrogen shift through a four-membered cyclic transition-state geometry, to produce ketene and phenol or p-cresol. Theoretical calculations showed reasonable agreement with experimental activation parameters when using the Perdew, Burke and Ernserhof (PBE)functional, through the stepwise [1,5] hydrogen-shift mechanism. For mechanism B, large deviation for the entropy of activation was observed. No experimental data were available for p-tolyl acetate; however, theoretical calculations showed similar results to phenyl acetate, thus supporting the stepwise mechanism for both phenyl acetate and p-tolyl acetate.  相似文献   
122.
Graphene—2D carbon—has received significant attention thanks to its electronic, thermal, and mechanical properties. Recently, nano‐graphene (nGr) has been investigated as a possible platform for biomedical applications. Here, a polymer‐coated nGr to deliver drugs to glioblastoma after systemic administration is reported. A biodegradable, biocompatible poly(lactide) (PLA) coating enables encapsulation and controlled release of the hydrophobic anticancer drug paclitaxel (PTX), and a hydrophilic poly(ethylene glycol) (PEG) shell increases the solubility of the nGr drug delivery system. Importantly, the polymer coating mediates the interaction of nGr with U‐138 glioblastoma cells and decreases cytotoxicity compared with pristine untreated nGr. PLA‐PEG‐coated nGr is also able to encapsulate PTX at 4.15 wt% and sustains prolonged PTX release for at least 19 d. PTX‐loaded nGr‐PLA‐PEGs are shown to kill up to 20% of U‐138 glioblastoma cells in vitro. Furthermore, nGr‐PLA‐PEG and CNT‐PLA‐PEG, two carbon nanomaterials with different shapes, are able to kill U‐138 in vitro as well as free PTX at significantly lower doses of drug. Finally, in vivo biodistribution of nGr‐PLA‐PEG shows accumulation of nGr in intracranial U‐138 glioblastoma xenografts and organs of the reticuloendothelial system.  相似文献   
123.
We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.  相似文献   
124.
Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged-but otherwise apparently inert-surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxylalkane-coated gold surface. We find that whereas surface attachment is destabilizing at low ionic strength, it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis, we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate.  相似文献   
125.
In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases.  相似文献   
126.
We establish the inequality $1/C_K(E)\ge \int_0^\infty |dK(t)|/N_E(t)$ , where E is a compact metric space, K is a kernel function, C K is the associated capacity, and N E (t) denotes the minimal number of sets of diameter t needed to cover E. We give applications to the capacity of generalized Cantor sets, and to the capacity of δ-neighborhoods of a set. We also investigate possible converses to the inequality.  相似文献   
127.
A wide range of nitric oxide (NO)-releasing materials has emerged as potential therapeutics that exploit NO's vast biological roles. Macromolecular NO-releasing scaffolds are particularly promising due to their ability to store and deliver larger NO payloads in a more controlled and effective manner compared to low molecular weight NO donors. While a variety of scaffolds (e.g., particles, dendrimers, and polymers/films) have been cleverly designed, the ultimate clinical utility of most NO-releasing macromolecules remains unrealized. Although not wholly predictive of clinical success, in vitro and in vivo investigations have enabled a preliminary evaluation of the therapeutic potential of such materials. In this tutorial review, we review the application of macromolecular NO therapies for cardiovascular disease, cancer, bacterial infections, and wound healing.  相似文献   
128.
129.
The essential oil of the leaves of Espeletia nana Cuatrec., obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were a-pinene (38.1%), beta-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), a-zingiberene (4.0%), and gamma-himachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923 (200 microg/mL) and Enterococcusfaecalis ATCC 29212 (600 microg/mL).  相似文献   
130.
We have explored the photogeneration of the coumarin 314 radical cation by using nanosecond laser excitation at wavelengths longer than 400 nm in benzene, acetonitrile, dichloromethane, and aqueous media. In addition, time-resolved absorption spectroscopy measurements allowed detection of the triplet excited state of coumarin 314 (C(314)) with a maximum absorption at 550 nm in benzene. The triplet excited state has a lifetime of 90 μs in benzene. It is readily quenched by oxygen (k(q) = 5.0 × 10(9) M(-1) s(-1)). From triplet-triplet energy transfer quenching experiments, it is shown that the energy of this triplet excited state is higher than 35 kcal/mol, in accord with the relatively large singlet oxygen quantum yield (Φ(Δ) = 0.25). However, in aqueous media, the coumarin triplet was no longer observed, and instead of that, a long-lived (160 μs in air-equilibrated solutions) free radical cation with a maximum absorbance at 370 nm was detected. The free radical cation generation, which has a quantum yield of 0.2, occurs by electron photoejection. Moreover, density functional theory (DFT) calculations indicate that at least 40% of the electronic density is placed on the nitrogen atom in aqueous media, which explains its lack of reactivity toward oxygen. On the other hand, rate constant values close to the diffusion rate limit in water (>10(9) M(-1) s(-1)) were found for the quenching of the C(314) free radical cation by phenolic antioxidants. The results have been interpreted by an electron-transfer reaction between the phenolic antioxidant and the radical cation where ion pair formation could be involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号