首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2328篇
  免费   49篇
  国内免费   19篇
化学   1440篇
晶体学   32篇
力学   81篇
数学   441篇
物理学   402篇
  2024年   8篇
  2023年   27篇
  2022年   45篇
  2021年   55篇
  2020年   67篇
  2019年   75篇
  2018年   63篇
  2017年   50篇
  2016年   87篇
  2015年   81篇
  2014年   102篇
  2013年   149篇
  2012年   171篇
  2011年   238篇
  2010年   115篇
  2009年   100篇
  2008年   154篇
  2007年   126篇
  2006年   132篇
  2005年   104篇
  2004年   93篇
  2003年   78篇
  2002年   61篇
  2001年   30篇
  2000年   19篇
  1999年   10篇
  1998年   15篇
  1997年   14篇
  1996年   16篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   3篇
  1987年   3篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1979年   2篇
  1978年   7篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1961年   3篇
  1942年   6篇
  1940年   3篇
排序方式: 共有2396条查询结果,搜索用时 0 毫秒
11.
In the present investigation, a study of the electron impact mass spectrometry data is reported for seven compounds of a series of some 3-(4-chlorobenzyl)-5-benzylidene-imidazolidine-2, 4-diones and 3-(4-fluoro or chlorobenzyl)-5-benzylidene-thiazolidine-2, 4-diones previously synthesized.  相似文献   
12.
13.
Waves scattered by a weakly inhomogeneous random medium contain a predominant single-scattering contribution as well as a multiple-scattering contribution which is usually neglected, especially for imaging purposes. A method based on random matrix theory is proposed to separate the single- and multiple-scattering contributions. The experimental setup uses an array of sources/receivers placed in front of the medium. The impulse responses between every couple of transducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deterministic coherence along the antidiagonals of the array response matrix, whatever the distribution of inhomogeneities. This property is taken advantage of to discriminate single- from multiple-scattered waves. This allows one to evaluate the absorption losses and the scattering losses separately, by comparing the multiple-scattering intensity with a radiative transfer model. Moreover, the relative contribution of multiple scattering in the backscattered wave can be estimated, which serves as a validity test for the Born approximation. Experimental results are presented with ultrasonic waves in the megahertz range, on a synthetic sample (agar-gelatine gel) as well as on breast tissues. Interestingly, the multiple-scattering contribution is found to be far from negligible in the breast around 4.3 MHz.  相似文献   
14.
A search for a heavy standard model Higgs boson decaying via H→ZZ→→?(+)?(-)νν, where ?=e, μ, is presented. It is based on proton-proton collision data at √s=7 TeV, collected by the ATLAS experiment at the LHC in the first half of 2011 and corresponding to an integrated luminosity of 1.04 fb(-1). The data are compared to the expected standard model backgrounds. The data and the background expectations are found to be in agreement and upper limits are placed on the Higgs boson production cross section over the entire mass window considered; in particular, the production of a standard model Higgs boson is excluded in the region 340相似文献   
15.
The Magicicada spp. life cycles with its prime periods and highly synchronized emergence have defied reasonable scientific explanation since its discovery. During the last decade several models and explanations for this phenomenon appeared in the literature along with a great deal of discussion. Despite this considerable effort, there is no final conclusion about this long standing biological problem. Here, we construct a minimal automaton model without predation/parasitism which reproduces some of these aspects. Our results point towards competition between different strains with limited dispersal threshold as the main factor leading to the emergence of prime numbered life cycles.  相似文献   
16.
A 30 months European Space Agency project started in March 2008, whose overall purpose is to expand and assess the performance of broadband (11–15 μm) quantum detectors for spectro-imaging applications: Dispersive Spectrometers and Fourier Transform Spectrometers. We present here the technical requirements, the development approach chosen as well as preliminary experimental results. Our approach is fully compatible with the final array format (1024 × 256, pitch 50–60 μm). We expect the requested uniformity, operability and SNR levels to be achieved at temperatures close to the goal values. The performance level will be demonstrated on 256 × 256, 50 μm pitch arrays. Also, operability and uniformity issues will be addressed on large mechanical 1024 × 256 hybrid arrays.  相似文献   
17.
We study an LC circuit implemented using a current-biased Josephson junction (CBJJ) as a tunable coupler for superconducting qubits. By modulating the bias current, the junction can be tuned in and out of resonance and entangled with the qubits coupled to it. One can thus implement two-qubit operations by mediating entanglement. We consider the examples of CBJJ and charge-phase qubits. A simple recoupling scheme leads to a generalization to arbitrary qubit designs.  相似文献   
18.
19.
    
Controlled protein functionalization holds great promise for a wide variety of applications. However, despite intensive research, the stoichiometry of the functionalization reaction remains difficult to control due to the inherent stochasticity of the conjugation process. Classical approaches that exploit peculiar structural features of specific protein substrates, or introduce reactive handles via mutagenesis, are by essence limited in scope or require substantial protein reengineering. We herein present equimolar native chemical tagging (ENACT), which precisely controls the stoichiometry of inherently random conjugation reactions by combining iterative low-conversion chemical modification, process automation, and bioorthogonal trans-tagging. We discuss the broad applicability of this conjugation process to a variety of protein substrates and payloads.

Controlled protein functionalization holds great promise for a wide variety of applications.

Applications of protein conjugates are limitless, including imaging, diagnostics, drug delivery, and sensing.1–4 In many of these applications, it is crucial that the conjugates are homogeneous.5 The site-selectivity of the conjugation process and the number of functional labels per biomolecule, known as the degree of conjugation (DoC), are crucial parameters that define the composition of the obtained products and are often the limiting factors to achieving adequate performance of the conjugates. For instance, immuno-PCR, an extremely sensitive detection technique, requires rigorous control of the average number of oligonucleotide labels per biomolecule (its DoC) in order to achieve high sensitivity.6 In optical imaging, the performance of many super-resolution microscopy techniques is directly defined by the DoC of fluorescent tags.7 For therapeutics, an even more striking example is provided by antibody–drug conjugates, which are prescribed for the treatment of an increasing range of cancer indications.8 A growing body of evidence from clinical trials indicates that bioconjugation parameters, DoC and DoC distribution, directly influence the therapeutic index of these targeted agents and hence must be tightly controlled.9Standard bioconjugation techniques, which rely on nucleophile–electrophile reactions, result in a broad distribution of different DoC species (Fig. 1a), which have different biophysical parameters, and consequently different functional properties.10Open in a separate windowFig. 1Schematic representation of the types of protein conjugates.To address this key issue and achieve better DoC selectivity, a number of site-specific conjugation approaches have been developed (Fig. 1b). These techniques rely on protein engineering for the introduction of specific motifs (e.g., free cysteines,11 selenocysteines,12 non-natural amino acids,13,14 peptide tags recognized by specific enzymes15,16) with distinct reactivity compared to the reactivity of the amino acids present in the native protein. These motifs are used to simultaneously control the DoC (via chemo-selective reactions) and the site of payload attachment. Both parameters are known to influence the biological and biophysical parameters of the conjugates,11 but so far there has been no way of evaluating their impact separately.The influence of DoC is more straightforward, with a lower DoC allowing the minimization of the influence of payload conjugation on the properties of the protein substrate. The lowest DoC that can be achieved for an individual conjugate is 1 (corresponding to one payload attached per biomolecule). It is noteworthy that DoC 1 is often difficult to achieve through site-specific conjugation techniques due to the symmetry of many protein substrates (e.g., antibodies). Site selection is a more intricate process, which usually relies on a systematic screening of conjugation sites for some specific criteria, such as stability or reactivity.17Herein, we introduce a method of accessing an entirely new class of protein conjugates with multiple conjugation sites but strictly homogenous DoCs (Fig. 1c). To achieve this, we combined (a) iterative low conversion chemical modification, (b) process automation, and (c) bioorthogonal trans-tagging in one workflow.The method has been exemplified for protein substrates, but it is applicable to virtually any native bio-macromolecule and payload. Importantly, this method allows for the first time the disentangling of the effects of homogeneous DoC and site-specificity on conjugate properties, which is especially intriguing in the light of recent publications revealing the complexity of the interplay between payload conjugation sites and DoC for in vivo efficacy of therapeutic bioconjugates.18 Finally, it is noteworthy that this method can be readily combined with an emerging class of site-selective bioconjugation reagents to produce site-specific DoC 1 conjugates, thus further expanding their potential for biotechnology applications.19  相似文献   
20.
    
We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th–O and U–O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.

ThO2 and UO2 nanoparticles synthesized using a COF-5 template exhibit unpassivated surfaces and provide insight into nanoscale properties of actinides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号