首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   14篇
  国内免费   2篇
化学   198篇
晶体学   3篇
力学   10篇
数学   125篇
物理学   44篇
  2023年   3篇
  2022年   15篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   11篇
  2017年   10篇
  2016年   22篇
  2015年   7篇
  2014年   23篇
  2013年   25篇
  2012年   35篇
  2011年   27篇
  2010年   21篇
  2009年   20篇
  2008年   15篇
  2007年   17篇
  2006年   13篇
  2005年   22篇
  2004年   9篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   7篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
排序方式: 共有380条查询结果,搜索用时 0 毫秒
101.
Linear free energy relationships (LFER) were applied to the kinetic data for the reaction of 5‐substituted orotic acids, series 1 , with diazodiphenylmethane (DDM) in N,N–dimethylformamide and compared with results obtained for 2‐substituted benzoic acids, series 2 . The correlation analysis of the kinetic data with σ substituent parameters was carried out using SSP (single substituent parameter) methods. From the sign and value of proportinality constant ρ, lower sensitivity to the substituent effect was obtained in series 1 , 0.876, than in the series 2 , 1.877. Evaluation of substituent “ortho‐effect” was performed using the Charton model, which includes the steric substituent parameter, and Fujita and Nishioka's model, which describes the total orthoeffect as contribution of ordinary polar effect, the orthosteric and orthopolar effects. Results of correlations, obtained by using the Charton model, showed highest contribution of the polar effect, 0.861 vs. 2.101, whereas the steric effect is of lowest significance, 0.117 vs. 0.055, for series 1 and 2 , respectively. Also, a low negative value of coefficient with the steric effect, –0.08, obtained from the Fujita–Nishioka model indicated low steric effect, influencing a decrease of the reaction rate in series 1 . The structural and substituent effects were also studied by using the density functional theory method, and together with kinetic data, it gave a better insight into the influence of the effect of both geometry and substituent on the π?electron density shift induced reactivity of investigated acids.  相似文献   
102.
The classical Voronoi identity $$\Delta (x) = - \frac{2}{\pi }\sum\limits_{n = 1}^\infty {d(n)} \left( {\frac{x}{n}} \right)^{1/2} \left( {K_1 (4\pi \sqrt {xn} ) + \frac{\pi }{2}Y_1 (4\pi \sqrt {xn} )} \right)$$ is proved in a relatively simple way by the use of the Laplace transform. Here Δ(x) denotes the error term in the Dirichlet divisor problem, d(n) is the number of divisors of n and K_1, Y_1 are the Bessel functions. The method of proof may be used to yield other identities similar to Voronoi's.  相似文献   
103.
104.
105.
Full length v-SNARE protein in lipid vesicles when exposed to t-SNARE-reconstituted lipid membrane results in the self-assembly of a t-/v-SNARE complex in a ring pattern, forming pores, and establishing continuity between the opposing bilayers. It is known that smaller vesicles fuse more efficiently than larger ones, and hence the curvature of secretory vesicles may dictate the potency and efficacy of their fusion at the cell plasma membrane. The diameter of t- and v-SNARE vesicles may, therefore, reflect the size of the t-/v-SNARE complex formed. In the present study, this hypothesis was tested, and results from the study demonstrate that the size of the t-/v-SNARE complex is directly proportional to the vesicle diameter (R2 = 0.9725).  相似文献   
106.
Cells have evolved elaborate mechanisms to regulate DNA replication machinery and cell cycles in response to DNA damage and replication stress in order to prevent genomic instability and cancer. The E3 ubiquitin ligase SCFDia2 in S. cerevisiae is involved in the DNA replication and DNA damage stress response, but its effect on cell growth is still unclear. Here, we demonstrate that the absence of Dia2 prolongs the cell cycle by extending both S- and G2/M-phases while, at the same time, activating the S-phase checkpoint. In these conditions, Ctf4—an essential DNA replication protein and substrate of Dia2—prolongs its binding to the chromatin during the extended S- and G2/M-phases. Notably, the prolonged cell cycle when Dia2 is absent is accompanied by a marked increase in cell size. We found that while both DNA replication inhibition and an absence of Dia2 exerts effects on cell cycle duration and cell size, Dia2 deficiency leads to a much more profound increase in cell size and a substantially lesser effect on cell cycle duration compared to DNA replication inhibition. Our results suggest that the increased cell size in dia2∆ involves a complex mechanism in which the prolonged cell cycle is one of the driving forces.  相似文献   
107.
108.
The greatest Serbian mathematician, Jovan Karamata (1902–1967), gained worldwide fame working on problems related to theorems of a Tauberian nature. His simple and elegant 1930 proof of the Hardy–Littlewood theorem found its place in the well-known monographs by Titchmarsh, Knopp, Doetsch, Widder, Hardy and Favard. It is less known that the method used in this proof was mentioned for the first time at a conference of the Academy of Natural Sciences of the Serbian Royal Academy of Sciences in Belgrade in 1929, where Karamata introduced the notion of majorizability as a new condition of convergence for Abel summable series. This fact holds the key to a historical insight into Karamata’s famous proof of the Hardy–Littlewood theorem.  相似文献   
109.
110.
It is not completely unreasonable to expect that a computable function bounding the number of Pachner moves needed to change any triangulation of a given 3-manifold into any other triangulation of the same 3-manifold exists. In this paper we describe a procedure yielding an explicit formula for such a function if the 3-manifold in question is a Seifert fibred space.Revised version: 5 March 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号