首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  国内免费   4篇
化学   79篇
物理学   8篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   6篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   13篇
  2011年   5篇
  2010年   10篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
81.
82.
The combination of molecular crowding and virtual imprinting was employed to develop a cost‐effective method to prepare molecularly imprinted polymers. By using linear polymer polystyrene as a macromolecular crowding agent, an imprinted polymer recognizable to punicalagin had been successfully synthesized with punicalin as the dummy template. The resulting punicalin‐imprinted polymer presented a remarkable selectivity to punicalagin with an imprinting factor of 3.17 even at extremely low consumption of the template (template/monomer ratio of 1:782). In contrast, the imprinted polymer synthesized without crowding agent, did not show any imprinting effect at so low template amount. The imprinted polymers made by combination of molecular crowding and virtual imprinting can be utilized for the fast separation of punicalagin from pomegranate husk extract after optimizing the protocol of solid‐phase extraction with the recovery of 85.3 ± 1.2%.  相似文献   
83.
Although the medicinal plant and food Nigella glandulifera Freyn has been researched for decades, isobenzofuranones have never been isolated before. Two isobenzofuranone derivatives and two saponins were successfully separated and purified from seeds of N. glandulifera Freyn by high-speed counter-current chromatography (HSCCC) with the optimized two-phase solvent system, n-hexane-ethyl acetate–methanol–water (7:3:5:5, v/v). Salfredin B11 (22.1 mg, HPLC purity 95.3%), 5, 7-dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one (18.9 mg, HPLC purity 97.3%) and crude sample 2 (555 mg) were separated from 600 mg of ethyl acetate extract of N. glandulifera Freyn. Following a cleaning-up step by chromatography on Sephadex LH-20, hederagenin (12 mg) and 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin (45 mg) were separated from sample 2. All of the fractions before peak II were collected and subjected to a Sephadex LH-20 column and eluted by methanol, two of triterpene saponins (12 mg of hederagenin and 45 mg of 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin) were isolated. The structures of peak fractions were identified by IR, electron ionization MS, 1H NMR and 13C NMR. 5, 7-Dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one was isolated for the first time from higher plant and salfredin B11 was isolated for the first time in this plant.  相似文献   
84.
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-β-ala and DNP-l-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential.  相似文献   
85.
Gu  DongYu  Yang  Yi  Zhong  Jie  Aisa  Haji Akber  Zhang  TianYou 《Chromatographia》2007,66(11):949-951

Preparative high-speed counter-current chromatography (HSCCC) combined with conventional column chromatography (CC) has been used for isolation and purification of methyllycaconitine from Delphinium pseudocyanthum. n-Hexane-ethyl acetate-methanol-water, 1:1:1:2 (v/v), was used as the solvent system for HSCCC. Separation of methyllycaconitine from an HSCCC fraction was successfully achieved by CC on silica gel using chloroform-methanol, 7:1 (v/v), as mobile phase. A total of 113.45 mg methyllycaconitine of purity >95% was obtained from 1.044 g extract of D. pseudocyanthum. Its structure was identified by MS and NMR.

  相似文献   
86.
This work aimed to develop and evaluate a post-acquisition data processing strategy, referred to as a mass defect filter (MDF), for rapid target the resin glycosides in root of Convolvulus scammonia by setting mass rang and mass defect range from high-resolution MS data. The full-scan mass data were acquired by high-performance liquid chromatography coupled with Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer that featured high resolution, mass accuracy, and sensitivity. To screen resin glycosides, three parent filter m/z 871, m/z 853, and m/z 869 combined with diagnostic fragment ions (DFIs) approach were applied to remove the interference from complex herbal extract. The targeted components were characterized based on detailed fragment ions. Using this approach, 80 targeted components, including 22 glycosidic acids and 58 resin glycosides were tentatively identified. The present results suggested that the proposed MDF strategy would be adaptable to the analysis of complex system in relevant filed.  相似文献   
87.
Yang Y  Gu D  Aisa HA  Ito Y 《Journal of chromatography. A》2011,1218(36):6128-6134
The performance of the figure-8 column configuration in centrifugal counter-current chromatography was investigated by changing the angle between the column axis (a line through the central post and the peripheral post on which the figure-8 coil is wound) and the centrifugal force. The first series of experiments was performed using a polar two-phase solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v) to separate two dipeptide samples, Trp-Tyr and Val-Tyr, at a flow rate of 0.05 ml/min at 1000 rpm. When the column angle was changed from 0° (column axis parallel to the centrifugal force) to 45° and 45° to 90° (column axis perpendicular to the centrifugal force), peak resolution (Rs) changed from 1.93 (Sf=37.8%) to 1.54 (Sf=30.6%), then to 1.31 (Sf=40.5%) with the lower mobile phase and from 1.21 (Sf=38.8%) to 1.10 (Sf=34.4%), then to 0.99 (Sf=42.2%) with the upper mobile phase, respectively, where the stationary phase retention, Sf, is given in parentheses. The second series of experiments was similarly performed with a more hydrophobic two-phase solvent system composed of hexane-ethyl acetate-methanol-0.1M hydrochloric acid (1:1:1:1, v/v) to separate three DNP-amino acids, DNP-glu, DNP-β-ala and DNP-ala, at a flow rate of 0.05 ml/min at 1000 rpm. When the column angle was altered from 0° to 45° and 45° to 90°, Rs changed from 1.77 (1st peak/2nd peak) and 1.52 (2nd peak/3rd peak) (Sf=27.3%) to 1.24 and 1.02 (Sf=35.4%), then to 1.69 and 1.49 (Sf=42.1%) with the lower mobile phase, and from 1.73 and 0.84 (SF=41.2%) to 1.44 and 0.73 (Sf=45.6%), then to 1.21 and 0.63 (Sf=55.6%) with the upper mobile phase, respectively. The performance of figure-8 column at 0° and 90° was also compared at different flow rates. The results show that Rs was increased with decreased flow rate yielding the highest value at the 0° column angle with lower mobile phase. The overall results of our studies indicated that a 0° column angle for the figure-8 column enhances the mixing of two phases in the column to improve peak resolution while decreasing the stationary phase retention by interrupting the laminar flow of the mobile phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号