首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   6篇
化学   63篇
晶体学   2篇
力学   1篇
数学   20篇
物理学   18篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2015年   7篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有104条查询结果,搜索用时 0 毫秒
101.
The local values of the parameters that characterize a laser-induced plasma (temperature, electron density, relative number densities of neutral atoms and ions) have been obtained by spatially resolved emission spectroscopy, including the deconvolution of the measured intensity spectra. The plasma has been generated using a Nd:YAG laser with a Fe–Ni alloy in air at atmospheric pressure, and the emission in the time window 3.0–3.5 μs has been detected. The temperature values obtained from neutral atom and ion emissions have been compared in the cases of local and spatially-integrated measurements. Local Boltzmann and Saha–Boltzmann plots with high correlation to linear fittings have been obtained using two broad sets of optically thin neutral atom and ion lines (21 Fe I lines and 15 Fe II lines), resulting in local values of the electronic temperature that coincide within the error. These results of local measurements contrast with those of spatially integrated measurements, for which two different temperatures are obtained from the Boltzmann plots of neutral atoms (9100±150 K) and ions (13 700±300 K). This difference is explained according to the measured distributions of the electronic temperature and the neutral atom and ion number densities, that result in separated emissivity (or population) distributions of neutral atom and ion lines, leading to different neutral atom and ion apparent temperatures (population-averages of the local electronic temperature). Local values of the plasma parameters have been obtained at all the positions with significant emission, including the determination of the electronic temperature from Saha–Boltzmann or Boltzmann plots. The ionization degree is high- and low-varying at the inner part of the plasma, decaying only near the plasma front. The maximum of the ion density does not coincide with the temperature maximum; on the contrary, the axial variation of both the neutral atom and ion densities (that decrease towards the sample surface) is opposite to that of the temperature, a behaviour that is interpreted to result from the plasma expansion process.  相似文献   
102.
Photodynamic therapy is taking importance as a nonintrusive treatment for nail onychomycosis. Knowledge of true transmittance values across nails could lead to qualitative and quantitative improvements in light-based treatments. We have characterized the spectral transmittance of healthy and fungally infected human fingernails and toenails according to nail thickness, and we propose a surface transmittance model for the small-scale optimization of light-based treatments. Transmittance of fingernails and toenails was analyzed by means of spectroradiometric measurements under solar-simulated visible light radiation (400 nm to 750 nm). The nail thickness was measured by means of microscope measurement. Transmittance was highest at longer wavelengths and decreased gradually as the wavelengths became shorter but with a significant nail transmittance of around 20% in the blue region of the spectrum. In the case of nails affected by onychomycosis, transmittance fell to under 10% because of the thickness of the nails, with no changes in spectral characteristics of transmitted light. Nail thickness is the main variable controlling exponentially light transmission in the visible spectrum and not only red radiation is effective for nail onychomycosis PDT. Blue light, the spectral band more effective for PPIX absorption is also effectively transmitted.  相似文献   
103.
Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.  相似文献   
104.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号