首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   853篇
  免费   20篇
  国内免费   3篇
化学   474篇
晶体学   7篇
力学   57篇
数学   71篇
物理学   267篇
  2023年   9篇
  2022年   10篇
  2021年   18篇
  2020年   19篇
  2019年   17篇
  2018年   12篇
  2017年   23篇
  2016年   28篇
  2015年   19篇
  2014年   23篇
  2013年   71篇
  2012年   44篇
  2011年   36篇
  2010年   37篇
  2009年   31篇
  2008年   31篇
  2007年   42篇
  2006年   39篇
  2005年   30篇
  2004年   28篇
  2003年   9篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   7篇
  1998年   10篇
  1997年   10篇
  1996年   7篇
  1995年   12篇
  1994年   7篇
  1993年   12篇
  1992年   12篇
  1991年   6篇
  1990年   7篇
  1989年   9篇
  1987年   7篇
  1984年   12篇
  1983年   6篇
  1982年   12篇
  1981年   10篇
  1980年   10篇
  1979年   14篇
  1978年   14篇
  1977年   11篇
  1976年   10篇
  1975年   5篇
  1974年   7篇
  1973年   5篇
  1971年   5篇
  1962年   5篇
排序方式: 共有876条查询结果,搜索用时 316 毫秒
61.
Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various proposed mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations of thioridazine with zwitterionic and negatively charged model lipid membranes. Thioridazine partitions into the interfacial region of membranes and modifies their structural and dynamic properties, however dissimilarly so at the highest membrane-occurring concentration, that appears to be obtainable only for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the drug–membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds.  相似文献   
62.
63.
The world is witnessing tumultuous times as major economic powers including the US, UK, Russia, India, and most of Europe continue to be in a state of lockdown. The worst-hit sectors due to this lockdown are sales, production (manufacturing), transport (aerospace and automotive) and tourism. Lockdowns became necessary as a preventive measure to avoid the spread of the contagious and infectious “Coronavirus Disease 2019” (COVID-19). This newly identified disease is caused by a new strain of the virus being referred to as Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS CoV-2; formerly called 2019-nCoV). We review the current medical and manufacturing response to COVID-19, including advances in instrumentation, sensing, use of lasers, fumigation chambers and development of novel tools such as lab-on-the-chip using combinatorial additive and subtractive manufacturing techniques and use of molecular modelling and molecular docking in drug and vaccine discovery. We also offer perspectives on future considerations on climate change, outsourced versus indigenous manufacturing, automation, and antimicrobial resistance. Overall, this paper attempts to identify key areas where manufacturing can be employed to address societal challenges such as COVID-19.  相似文献   
64.
Recent reports on the formation of hydrogen peroxide (H2O2) in water microdroplets produced via pneumatic spraying or capillary condensation have garnered significant attention. How covalent bonds in water could break under such mild conditions challenges our textbook understanding of physical chemistry and water. While there is no definitive answer, it has been speculated that ultrahigh electric fields at the air–water interface are responsible for this chemical transformation. Here, we report on our comprehensive experimental investigation of H2O2 formation in (i) water microdroplets sprayed over a range of liquid flow-rates, (shearing) air flow rates, and air composition, and (ii) water microdroplets condensed on hydrophobic substrates formed via hot water or humidifier under controlled air composition. Specifically, we assessed the contributions of the evaporative concentration and shock waves in sprays and the effects of trace O3(g) on the H2O2 formation. Glovebox experiments revealed that the H2O2 formation in water microdroplets was most sensitive to the air–borne ozone (O3) concentration. In the absence of O3(g), we could not detect H2O2(aq) in sprays or condensates (detection limit ≥250 nM). In contrast, microdroplets exposed to atmospherically relevant O3(g) concentration (10–100 ppb) formed 2–30 µM H2O2(aq), increasing with the gas–liquid surface area, mixing, and contact duration. Thus, the water surface area facilitates the O3(g) mass transfer, which is followed by the chemical transformation of O3(aq) into H2O2(aq). These findings should also help us understand the implications of this chemistry in natural and applied contexts.

A. Gallo Jr, H. Mishra et al., pinpoint the origins of the spontaneous H2O2 formation in water microdroplets formed via spraying or condensation, i.e., without the addition of electrical energy, catalyst, or co-solvent.  相似文献   
65.
66.
In this paper we define higher order (F,α,β,ρ,d,E)-convex function with respect to E-differentiable function K and obtain optimality conditions for nonlinear programming problem (NP) from the concept of higher order (F,α,β,ρ,d)-convexity. Here, we establish Mond-Weir and Wolfe duality for (NP) and utilize these duality in nonlinear fractional programming problem.  相似文献   
67.
The present research investigates the tuber proteome of the ‘medicinal’ plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as ‘kiku-imo’) as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.  相似文献   
68.
Nickel ferrite is a soft magnetic material with inverse spinel structure. Soft ferrite films are used in microwave devices, integrated planar circuits, etc., because of their high resistivity. In this work, thin films of nickel ferrite were deposited on Si (100) substrate by using pulsed laser deposition (PLD) technique. The thickness of the film was measured by surface profilometer and also by X‐ray reflectivity (XRR). The films were annealed at three different temperatures to observe the effect on the structural and magnetic properties of the film. The films were characterised by X‐ray diffraction (XRD), Raman spectroscopy and vibrating sample magnetometer (VSM) to study the structural and magnetic properties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
69.
We present the results of a study of structural, electronic, and optical properties of the unpassivated and H-passivated GaN nanowires having diameters in the range of 3.29 to 18.33 Å grown along [001] direction by employing the first-principles pseudopotential method within density functional theory in the local density approximation. Two types of nanowires having hexagonal and triangular cross-sections have been investigated. The binding energy increases with the diameter of the nanowire because of a decrease in the relative number of the unsaturated surface bonds. The binding energies of the triangular cross-sectional nanowires are somewhat smaller than those of the hexagonal cross-sectional nanowires in accordance with the Wulff’s rule except the smallest diameter triangular cross-sectional nanowire, where the binding energy is comparable with the corresponding hexagonal cross-sectional nanowires. The band gap varies rapidly with the diameter of the nanowire in the case of the smaller diameter nanowires, and quite slowly for the larger diameter nanowires. After atomic relaxation, appreciable distortion occurs in the nanowires, where the chains of Ga- and N-atoms are curved in different directions. These distortions are reduced with the diameters of the nanowires. The optical absorption in the GaN nanowires is quite strong in the ultra-violet region but an appreciable absorption is also present in the visible region for the larger diameter nanowires. The present results indicate the possibility of engineering the properties of nanowires by manipulating their diameter and surface structure. The presently predicted smaller diameter GaN nanowire possessing the triangular cross-section should be observable in the experiments.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号