Many of the essential oils obtained from medicinal plants possess proven antimicrobial activity and are suitable for medicinal purposes and applications in the food industry. The aim of the present work was the chemical analysis of 19 essential oils (EOs) from seven different Cymbopogon species (C. nardus, C. citratus, C winterianus, C. flexuosus, C. schoenanthus, C. martinii, C. giganteus). Five different chemotypes were established by GC/MS and TLC assay. The EOs, as well as some reference compounds, i.e., citronellol, geraniol and citral (neral + geranial), were also tested for their antimicrobial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA) by the microdilution method and direct bioautography. The toxicity of EOs was evaluated by Danio rerio ‘Zebrafish’ model assay. All examined EOs showed moderate to high activity against MRSA, with the highest activity noted for C. flexuosus—lemongrass essential oil, both in microdilution and direct autobiography method. Significant difference in the toxicity of the examined EOs was also detected. 相似文献
The 1H, 13C and 1H, 13C COSY NMR spectra of salicylohydroxamic acid (sha) were measured in DMSO-d6 solution. The B3LYP GIAO method with the 6-311++G(d,p) basis set was chosen to reproduce the experimental spectra. All possible zusammen and entgegen conformers of monomeric sha were computed. After geometry optimisation (B3LYP/6-311++G(d,p)) only nine independent models of the molecule were shown to be stable. Additionally, the NMR chemical shifts of the Onsager model of the most stable monomer were calculated. The computed chemical shifts for the labile protons for all aforementioned geometries meaningfully underestimated experimental results suggesting the existence of the H-bonded structure of sha in DMSO solution. The most probable two dimeric structures along with two solvent-bounded aggregates were subsequently calculated at the same level of theory. The best agreement was obtained for sha H-bonded with two DMSO molecules (confirmed by the absence of concentration effect). The relative error not exceeding 10 and 4% for chemical shifts in 1H and 13C NMR spectra of sha–(DMSO)2, respectively, showed that the applied method with the B3LYP/6-311++G(d,p) basis set was efficient to predict the NMR shifts of a compound with strong H-bonds. Thus, this allows to assign properly NMR resonances to specific structure formed in DMSO solution. 相似文献
The properties of the carbonate neutral carrier 4-( n-hexadecyl)-3-nitro-1-trifluoroacetylbenzene were compared with those of a similar carrier, without a nitro group, studied previously. In spite of differences in the Hammett constant of the carbonyl group responsible for interaction with the analyte, the analytical characteristics of both carriers, measured under the same conditions, were comparable. Special care was taken to avoid the presence of an excessive carbon dioxide level in the diffusion layer at the membrane-solution interface. The internal reference solution was prepared without carbonate components; the external solution was protected from contact with atmospheric carbon dioxide. Under such conditions the detection limit of both electrodes was extended to 10(-11 )mol L(-1), and the selectivity towards salicylate, chloride, and acetate was significantly improved. 相似文献
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties. 相似文献
Wet vacuum impregnation method was applied in order to evaluate the possibility of the formation of the material in BaCe0.9Y0.1O3?δ–V2O5 system. Single-phase BaCe0.9Y0.1O3?δ samples, synthesised by solid-state reaction method, were impregnated with the solution of vanadium(V) oxide precursor. Multi-step, multi-cycle impregnation procedure was applied to enhance the impregnation efficiency. Partial decomposition of Y-doped BaCeO3 in contact with the solution of the precursor, resulting in the formation of vanadium containing phases (CeVO4 and BaV2O6) on the materials surface, was observed. However, the presence of vanadium was also confirmed for the inner parts of the materials. The synthesised materials were submitted for exposition test to evaluate their chemical stability towards CO2/H2O. All BaCe0.9Y0.1O3-based materials modified by impregnation revealed higher chemical stability in comparison with single-phase un-modified BaCe0.9Y0.1O3?δ, since the amount of barium carbonate formed during the exposition was significantly lower. The total electrical conductivity of the received multi-phase materials was generally slightly lower than for the reference BaCe0.9Y0.1O3?δ sample, since the presence of the additional phases had a blocking effect on materials conductivity. The values of BaCeO3 lattice parameters and the Seebeck coefficient did not show the modification of the defects structure of Y-doped BaCeO3 during applied synthesis procedure.
The reaction of N‐(2‐R1‐oxyphenyl)benzimidoyl chlorides with cyanamide derivatives in the presence of titanium tetrachloride as a catalyst has yielded some new 4‐amino‐8‐R1‐oxy‐2‐phenylquinazolines. pKa values have been determined for these compounds and the influence of substituents at the basicity of the parent system has been discussed. Some investigations on the methyl‐quinazolinyl ether cleavage in different medium have been done yielding the appropriate hydroxyquinazoline derivatives. In those cases when the deprotection of 4‐amino‐8‐methoxy‐2‐phenylquinazoline was carried in aqueous acidic solutions, the formation of the hydrolysis products 3,4‐dihydro‐2‐phenyl‐4‐quinazolone derivatives was observed as well. 相似文献
The contents of free phenolic acids and cinnamic acid were determined using an HPLC method in methanolic extracts from biomass
of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) at different stages of organogenesis, cultured in vitro on a few variants of Murashige
and Skoog (MS) medium, containing different concentrations of plant growth regulators 6-benzylaminopurine (BAP) and 1-naphthaleneacetic
acid (NAA) (from 0.1 to 3.0 mg/l) and in extracts from overground parts of plants growing in vivo. Six of 12 analysed compounds
were detected in all extracts: chlorogenic, p-coumaric, p-hydroxybenzoic, protocatechuic, salicylic and syringic acids. Total contents of the examined metabolites in biomass of shoot-differentiating
callus culture cultivated on six MS medium variants were dependent on concentrations of growth regulators in the media and
ranged from 14.90 to 60.05 mg/100 g d.w. Total contents of the compounds in biomass extracts from undifferentiating callus
culture maintained only on two of six MS medium variants were higher and amounted to 74.54 and 78.24 mg/100 g d.w. Maximum
total contents of phenolic acids in both types of in vitro cultures were greater than in fruits (55.73 mg/100 g d.w.) and
leaves (4.55 mg/100 g d.w.) of plants gowning in vivo. Chlorogenic acid and salicylic acid were the main compounds identified
in biomass extracts of shoot-differentiating callus cultures (max 22.60 and 21.17 mg/100 g d.w., respectively), while chlorogenic
acid (max 38.43 mg/100 g d.w.) and protocatechuic acid (max 20.95 mg/100 g d.w.) prevailed in the extracts from undifferentiating
callus cultures. Other compounds dominated in fruits, namely p-coumaric acid (23.36 mg/100 g d.w.) and syringic acid (14.96 mg/100 g d.w.). This is the first report on biochemical potential
of cells from S. chinensis in vitro cultures to produce the biologically active phenolic acids. These are the first results on the analysis of this
group of metabolites in overground parts of plants growing in vivo, too. 相似文献
Our recent studies identified a novel pathway of nicotinamide metabolism that involves 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) and demonstrated its endothelial cytotoxic effect. This study tested the effects of 4PYR and its metabolites in experimental models of breast cancer. Mice were divided into groups: 4T1 (injected with mammary 4T1 cancer cells), 4T1 + 4PYR (4PYR-treated 4T1 mice), and control, maintained for 2 or 21 days. Lung metastasis and endothelial function were analyzed together with blood nucleotides (including 4PYR), plasma amino acids, nicotinamide metabolites, and vascular ectoenzymes of nucleotide catabolism. 4PYR metabolism was also evaluated in cultured 4T1, MDA-MB-231, MCF-7, and T47D cells. An increase in blood 4PYR in 4T1 mice was observed at 2 days. 4PYR and its metabolites were noticed after 21 days in 4T1 only. Higher blood 4PYR was linked with more lung metastases in 4T1 + 4PYR vs. 4T1. Decreased L-arginine, higher asymmetric dimethyl-L-arginine, and higher vascular ecto-adenosine deaminase were observed in 4T1 + 4PYR vs. 4T1 and control. Vascular relaxation caused by flow-dependent endothelial activation in 4PYR-treated mice was significantly lower than in control. The permeability of 4PYR-treated endothelial cells was increased. Decreased nicotinamide but enhanced nicotinamide metabolites were noticed in 4T1 vs. control. Reduced N-methylnicotinamide and a further increase in Met2PY were observed in 4T1 + 4PYR vs. 4T1 and control. In cultured breast cancer cells, estrogen and progesterone receptor antagonists inhibited the production of 4PYR metabolites. 4PYR formation is accelerated in cancer and induces metabolic disturbances that may affect cancer progression and, especially, metastasis, probably through impaired endothelial homeostasis. 4PYR may be considered a new oncometabolite.Subject terms: Mechanisms of disease, Pathogenesis, Breast cancer相似文献
The present work focused on the qualitative and quantitative analysis of Cr detoxification strategy of aquatic cosmopolitan plant Callitriche cophocarpa. This plant species has just been described in the context of its unusual accumulation potential of Cr. The emphasis of the work was placed on the redox reaction Cr(VI)→Cr(III) which is considered to be remediation mechanism of highly reactive and mobile Cr(VI) ions. Plants were immersed for 5 days in 1 mM of Cr(VI) (potassium dichromate) or 1 mM of Cr(III) (chromium sulphate) solutions in semi-natural conditions. Cr was effectively removed from the solution up to the extent of ca.58% or 35% of the starting amount, in the case of Cr(III) and Cr(VI), respectively. No plant-induced Cr(VI) reduction accompanying Cr accumulation was observed in Cr(VI) solutions except from the apparent one, noticed at the fourth day of incubation. On the contrary to these results, according to the method of electron paramagnetic resonance spectroscopy (L-band EPR), biphasic signal of Cr(V) attending Cr(VI) to Cr(III) reduction was detected inside the plant tissue every day of investigations. Our results show that phytoextraction but not phytostabilization is the main strategy of Cr detoxification by C. cophocarpa in aquatic systems. 相似文献