首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   13篇
化学   127篇
晶体学   10篇
力学   12篇
数学   19篇
物理学   180篇
  2024年   2篇
  2023年   6篇
  2022年   11篇
  2021年   38篇
  2020年   11篇
  2019年   11篇
  2018年   11篇
  2017年   9篇
  2016年   17篇
  2015年   6篇
  2014年   8篇
  2013年   12篇
  2012年   25篇
  2011年   34篇
  2010年   13篇
  2009年   9篇
  2008年   24篇
  2007年   18篇
  2006年   16篇
  2005年   13篇
  2004年   7篇
  2003年   9篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
341.
Single walled carbon nanotubes (SWNTs) continue to demonstrate the potential of nanoscaled materials in a wide range of applications. The ability to modulate the mechanical or electrical properties of a material by varying the SWNT component may result in diverse "application tunable" materials. Similarly, biomaterials used in tissue engineering applications may benefit from these characteristics by varying electrical and mechanical properties to enhance or direct tissue specific regeneration. The interactions between SWNTs and cellular systems need to be optimized to integrate these highly hydrophobic nanoparticles within an aqueous environment while maintaining their unique properties. We assessed solubility, conductance, and cellular interactions between four different SWNT preparations (unrefined, refined, and SWNT with either albumin or human plasma adsorbed). Initial interactions between cells and SWNTs were assessed within a 3D environment using a red blood cell lysis model, with longer-term interactions assessing the effects on PC12 and 3T3 fibroblast function when cultured on SWNT-collagen composite hydrogels. After SWNT purification, the lytic effect on red blood cells (RBCs) is significantly reduced from 11% to 0.7%, indicating manufacturing contaminants play a significant role in undesirable cell interactions. Nanotubes with either human plasma or albumin physisorbed onto the nanotube surface were significantly more hydrophilic than either unrefined or refined preparations and displayed improved RBC interactions. Despite improved dispersion, purification, and adsorption of either plasma or albumin, SWNTs caused a significant reduction in conductance. Although the molecular interactions occurring at the cell membrane remain unclear, these investigations have identified two main factors contributing to membrane failure: manufacturing impurities and to a lesser extend the material's innate hydrophobicity. Although purification is a critical step to remove toxic manufacturing contaminants, care must be taken to ensure improved aqueous dispersion does not compromise desirable mechanical and electrical attributes.  相似文献   
342.
We present a detailed theoretical investigation of the dynamics corresponding to the strongly endothermic Br + H(2) (v = 0-1, j = 0) → H + HBr reaction in the 0.85 to 1.9 eV total energy range. State-averaged and state-to-state results obtained through time-independent wave packet (TIWP) and time-independent quantum mechanical (TIQM) calculations and quasiclassical trajectories (QCT) are compared and analyzed. The agreement in the results obtained with both quantum mechanical results is very good overall. However, although QCT calculations reproduce the general features, their agreement with the QM results is sometimes only qualitative. The analysis of the mechanism based on state-averaged results turns out to be deceptive and conveys an oversimplified picture of the reaction consistent with a direct-rebound mechanism. Consideration of state-to-state processes, in contrast, unveils the existence of multiple mechanisms that give rise to a succession of maxima in the differential cross section (DCS). Such mechanisms correlate with different sets of partial waves and display similar collision times when analyzed through the time-dependent DCS.  相似文献   
343.
We consider the numerical approximation of a singularly perturbed time delayed convection diffusion problem on a rectangular domain. Assuming that the coefficients of the differential equation be smooth, we construct and analyze a higher order accurate finite difference method that converges uniformly with respect to the singular perturbation parameter. The method presented is a combination of the central difference spatial discretization on a Shishkin mesh and a weighted difference time discretization on a uniform mesh. A?priori explicit bounds on the solution of the problem are established. These bounds on the solution and its derivatives are obtained using a suitable decomposition of the solution into regular and layer components. It is shown that the proposed method is $L_{2}^{h}$ -stable. The analysis done permits its extension to the case of adaptive meshes which may be used to improve the solution. Numerical examples are presented to demonstrate the effectiveness of the method. The convergence obtained in practical satisfies the theoretical predictions.  相似文献   
344.
We calculate the effective bulk viscosity of a dilute dispersion of rigid n-dimensional hyperspheres in a compressible Newtonian fluid at zero Reynolds number.  相似文献   
345.
Complex thermoacoustic oscillations are observed experimentally in a simple laboratory combustor that burns lean premixed fuel-air mixture, as a result of nonlinear interaction between the acoustic field and the combustion processes. The application of nonlinear time series analysis, particularly techniques based on phase space reconstruction from acquired pressure data, reveals rich dynamical behavior and the existence of several complex states. A route to chaos for thermoacoustic instability is established experimentally for the first time. We show that, as the location of the heat source is gradually varied, self-excited periodic thermoacoustic oscillations undergo transition to chaos via the Ruelle-Takens scenario.  相似文献   
346.
Parasitic diseases are among neglected disease of human and animals, especially in tropical and sub tropical regions. In the era of artificial intelligence, the novel biosensing diagnostic platform is needed for an early control measure implementation. This goal can be successfully achieved by onsite application of electrochemical biosensors. They are being developed towards point of care diagnostics; however commercial availability is scanty. The recent developments during last one decade in terms of the electrode surface modification for rapid diagnosis of important emerging/re-emerging parasites is presented. The information would help future improvement in the electrochemical biosensing of parasites.  相似文献   
347.
Chirality is a very important characteristic of optically active molecules and polyaromatics with helical structures, and plays a vital role in various applications in material science. In the present work, we show the effects of fluorine substitution at various positions in a figure-8-shaped [5]helicene dimer on the ground and excited state g-factors. Calculations for the ground and excited states are performed at the MP2 and ADC(2) levels of theory, respectively. The results reveal that fluorination has a large effect on the excited state structures. The values of the excited state dissymmetry factors for the molecules with fluorinations at both ends of the figure-8 systems are smaller than that of the parent system. On the other hand, fluorinations only in the stacked-phenyl region results in an increase in the value of . The perfluorinated system shows the smallest .  相似文献   
348.
Aldehydes serve as the key functional group in organic synthesis and are valuable intermediates. The various advanced methods of direct formylation reactions have been reviewed in this article. Overcoming the drawbacks of the traditional methods of formylation, newer methods involving homo and heterogenous catalysts, one pot reactions, solvent free techniques are elaborated, which can be performed under mild conditions and using inexpensive resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号