首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
  国内免费   1篇
化学   41篇
力学   7篇
数学   3篇
物理学   26篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   4篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
  1977年   2篇
  1943年   1篇
  1907年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
31.
The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1−xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1−xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1−xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.  相似文献   
32.
33.
34.
The oxidation of alcohols has been achieved using Grubbs’ catalyst or a ruthenium p-cymene complex without the presence of an added oxidant.  相似文献   
35.
36.
The elasmobranchs-sharks, rays, and skates-can detect very weak electric fields in their aqueous environment through a complex sensory system, the ampullae of Lorenzini. The ampullae are conducting tubes that connect the surface of the animal to its interior. In the presence of an electric field, the potential of the surface of the animal will differ from that of the interior and that potential is applied across the apical membrane of the special sensory cells that line the ampullae. The firing rate of the afferent neurons that transmit signals from the ampullae has been shown to vary with that potential. We show that those firing rates can be described quantitatively in terms of synchronous firing of the sensory cells that feed the neurons. We demonstrate that such synchronism follows naturally from a hypothetical weak cell-to-cell interaction that results in a self-organization of the sensory cells. Moreover, the pulse rates of those cells-and the neurons that service the cells-can be expected to vary with the imposed electric fields in accord with measured values through actions of voltage gated transmembrane proteins in the apical sector of the cell membranes that admit Ca(++) ions. We also present a more conjectural model of signal processing at the neuron level that could exploit small differences in firing rates of nerve fibers servicing different ampullae to send an unambiguous signal to the central nervous system of the animal. (c) 1998 American Institute of Physics.  相似文献   
37.
38.
39.
40.
Core-shell structured Ag/SiO2 nanocomposite has been synthesized by a cyclohexane/Igepal/water reverse micelle system. The spherical nanocomposite particles were washed and concentrated with high performance liquid chromatography (HPLC) to remove the surfactant added during synthesis. Spherical SiO2 micrometer-scale particles were packed in the HPLC column as a stationary phase for the washing and dispersing of Ag/SiO2 nanocomposite particles. Surface modification of Ag/SiO2 nanocomposite particles and SiO2 microspheres with silane coupling agent enhanced the surface charge of the particles and improved the efficiency of washing with HPLC. Well-dispersed Ag/SiO2 stable suspensions were successfully attained in ethanol/water mixed solvents after HPLC washing. The state of dispersion for the Ag/SiO2 nanocomposite suspension was systematically assessed using dynamic light scattering (DLS) and transmission electron microscope (TEM) and spin coat/atomic force microscope (AFM) analyses. The mechanism of the enabling HPLC washing protocol for SiO2-based nanoparticles is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号