In this study different membranes were produced, aiming to evaluate their use in electrodialysis. These membranes were produced using conventional polymer (high-impact polystyrene) and polyaniline. The membrane characterization was done by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetry (TGA). The studies of the zinc and proton extraction ionic transport through the membranes were evaluated using a three-compartment cell. The results obtained using the produced membranes were compared to the results obtained with the commercial membrane Nafion 450. It was found that a synthesized membrane can be used to recover zinc in acid media. In addition, a preliminary computational essay about the structures of PAni and CSA is presented. 相似文献
The magnetic properties of the Cu(II)-peptide compounds (L-tyrosyl-L-leucinato)Cu(II) and (L-tryptophyl-glycinato)Cu(II), to be identified as Cu(II)Tyr-Leu and Cu(II)Trp-Gly, respectively, have been investigated by specific heat (0.08 < T < 28 K), dc magnetization (2 < T < 80 K, with B(0) = mu(o)H < or = 9 T), and ac magnetic susceptibility (with B(0) = 0 for 0.03 < T < 3 K and B(0) up to 9 T for 2 < T < 80 K) measurements. Above approximately 1 K, the specific heat and magnetization of both compounds display a ferromagnetic (FM) spin chain behavior sustained by syn-anti carboxylate bridges connecting equatorially Cu(II) ions at about 5 A. To model this behavior, we calculated the eigenvalues of Heisenberg chains with up to 20 spins 1/2 and used the method of Bonner and Fisher. A global fit of the model to the specific heat and magnetization data gives 2J(0)/k(B) = 3.60(5) K and 2.59(5) K for the intrachain exchange interactions in Cu(II)Tyr-Leu and Cu(II)Trp-Gly, respectively (H(ex)(i,j) = -2J(0) S(i).S(j)). These values of 2J(0) are discussed in terms of structural properties of the carboxylate bridges in the two compounds. Using the parameters obtained from the global fit, we calculated isothermal susceptibilities in agreement with the ac susceptibilities measured with small applied dc magnetic fields. However, the ac susceptibility measured with applied dc fields larger than 1 T lie between the values calculated for the isothermal and adiabatic susceptibilities. At 0.16 K for Cu(II)Tyr-Leu and 0.53 K for Cu(II)Trp-Gly, the observed specific heat and magnetic susceptibility display peaks associated to three-dimensional magnetic phase transitions. The interchain exchange couplings 2J(1) producing the 3D magnetic order are ferromagnetic and have magnitudes 2J(1)/k(B) approximately 0.015 and 0.073 K for Cu(II)Tyr-Leu and Cu(II)Trp-Gly, respectively. 相似文献
The structure, preferred conformers, vibrational spectrum, and photochemical behavior of the novel azirine, methyl 2-chloro-3-methyl-2H-azirine-2-carboxylate (MCMAC) were investigated in low-temperature matrixes and in the neat solid amorphous state by infrared spectroscopy and quantum-chemical calculations. Two conformers of the compound were observed in argon, krypton, and xenon matrixes, in agreement with the DFT(B3LYP)/6-311++G(d,p) and MP2/6-311++G(d,p) theoretical calculations. Both conformers were found to exhibit the carboxylic ester group in the cis conformation, differing in the arrangement defined by the O=C-C-Cl dihedral angle (cis and trans, for Ct and Cc forms, respectively). The Ct conformer was found to be the most stable conformer in the gaseous phase as well as in both argon and krypton matrixes, whereas the more polar Cc conformer became the most stable form in the xenon matrix and in the neat solid amorphous phase. In situ broadband UV (lambda > 235 nm) excitation of matrix-isolated MCMAC led to azirine ring C-C and C-N bond cleavages, the latter process corresponding to the most efficient reaction channel. The photochemical cleavage of the C-N bond had never been previously observed in the case of aliphatic 2H-azirines. Two electron withdrawing substituents (methoxycarbonyl group and chlorine atom) are connected to the azirine ring in the novel MCMAC azirine. The simultaneous presence of these two groups accelerates intersystem crossing toward the triplet state where cleavage of the C-N bond takes place. The primary photoproducts resulting from the C-N and C-C ring-opening reactions were also found to undergo further photochemical decarbonylation or decarboxylation reactions. 相似文献
Formation of the HPAM-Tb3 complex in solution was observed in the intensification of Tb(III) fluorescence, viscosity, and light scattering. The interaction is dependent on the degree of hydrolysis of the copolymer and the pH of the solution. As the pH value increases, an intensification of the interaction and formation of a gel is observed. The latter was associated with the appearance of crosslinks in which terbium, or one of its hydrolysis products, works as a binding agent between chains. After drying, the characterization of the residues of the gels was effected by analytical determination (C, H, N, Cl, Tb), fluorescence, and infrared spectrophotometry. The analysis and fluorescence revealed the existence of particles of terbium hydroxide; the infrared spectrophotometry showed the binding of terbium (III) to carboxylate of the copolymer. 相似文献
The objective of this study was to evaluate antiproliferative activity, antioxidant capacity and tannin content in plants from semi-arid northeastern Brazil (Caatinga). For this study, we selected 14 species and we assayed the methanol extracts for antiproliferative activity against the HEp-2 (laryngeal cancer) and NCI-H292 (lung cancer) cell lines using the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazole) (MTT) method. In addition, the antioxidant activity was evaluated with the DPPH (2,2-diphenyl-2-picrylhydrazyl) assay, and the tannin content was determined by the radial diffusion method. Plants with better antioxidant activity (expressed in a dose able to decrease the initial DPPH concentration by 50%, or IC50) and with higher levels of tannins were: Poincianella pyramidalis (42.95±1.77 μg/mL IC50 and 8.17±0.64 tannin content), Jatropha mollissima (54.09±4.36μg/mL IC50 and 2.35±0.08 tannin content) and Anadenanthera colubrina (73.24±1.47 μg/mL IC50 and 4.41±0.47 tannin content). Plants with enhanced antiproliferative activity (% living cells) were Annona muricata (24.94±0.74 in NCI-H292), Lantana camara (25.8±0.19 in NCI-H292), Handroanthus impetiginosus (41.8±0.47 in NCI-H292) and Mentzelia aspera (45.61±1.94 in HEp-2). For species with better antioxidant and antiproliferative activities, we suggest future in vitro and in vivo comparative studies with other pharmacological models, and to start a process of purification and identification of the possible molecule(s) responsible for the observed pharmacological activity. We believe that the flora of Brazilian semi-arid areas can be a valuable source of plants rich in tannins, cytotoxic compounds and antioxidant agents. 相似文献
Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude
of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors
of 6 and 10 l capacities. A complete factorial experimental design was used, with the goal of optimizing the aeration rate
(0.5, 1.0, and 1.5 vvm) and agitation speed (300, 550, and 800 rpm). Aeration was identified as the primary variable affecting
the process, with a maximum rhamnose concentration occurring at an aeration rate of 0.5 vvm. At optimum levels, a maximum
rhamnose concentration of 3.3 g/l, an emulsification index of 100%, and a minimum surface tension of 26.0 dynes/cm were achieved.
Under these conditions, the biosurfactant production derived from using a mixture of waste frying soybean oil (WFSO) as a
carbon source was compared to production when non-used soybean oil (NUSO), or waste soybean oils used to fry specific foods,
were used. NUSO produced the highest level of rhamnolipids, although the waste soybean oils also resulted in biosurfactant
production of 75–90% of the maximum value. Under ideal conditions, the kinetic behavior and the modeling of the rhamnose production,
nutrient consumption, and cellular growth were established. The resulting model predicted data points that corresponded well
to the empirical information. 相似文献
The factors that affect trihalomethane (THM) (chloroform, bromodichloromethane, chlorodibromomethane and bromoform) formation from the chlorination of aqueous solutions of hydrophobic fulvic acids (FA) were investigated in a prototype laboratorial simulation using factorial analysis. This strategy involved a fractional factorial design (16 plus 5 center experiments) of five factors (fulvic acids concentration, chlorine dose, temperature, pH and bromide concentration) and a Box Behnken design (12 plus 3 center experiments) for the detailed analysis of three factors (FA concentration, chlorine dose and temperature). The concentration of THM was determined by headspace analysis by GC-ECD. The most significant factors that affect the four THM productions were the following: chloroform-FA concentration and temperature; bromodichloromethane-FA concentration and chlorine dose; chlorodibromomethane-chlorine dose; and, bromoform-chlorine dose and bromide concentration. Moreover, linear models were obtained for the four THM concentrations in the disinfection solution as function of the FA concentration, chlorine dose and temperature, and it was observed that the complexity of the models (number of significant factors and interactions) increased with increasing bromine atoms in the THM. Also, this study shows that reducing the FA concentration the relative amount of bromated THM increases. 相似文献
Clavulanic acid (CA) is frequently prescribed for treatment of bacterial infections. Despite the large number of studies concerning CA production, there is still a need to search for more effective and productive processes because it is mainly produced by biochemical route and is chemically unstable. This paper evaluates the influence of acid and cold stresses on CA production by Streptomyces clavuligerus in bench scale stirred tank bioreactor. Four batch cultures were conducted at constant pH (6.8 or 6.3) and temperature (30, 25, or 20 °C) and five batch cultures were performed with application of acid stress (pH reduction from 6.8 to 6.3), cold stress (reduction from 30 to 20 °C), or both. The highest maximum CA concentration (684.4 mg L−1) was obtained in the culture conducted at constant temperature of 20 °C. However, the culture under acid stress, in which the pH was reduced from 6.8 to 6.3 at a rate of 0.1 pH unit every 6 h, provided the most promising result, exhibiting a global yield coefficient of CA relative to cell formation (YCA/X) of 851.1 mgCA gX−1. High YCA/X values indicate that a small number of cells are able to produce a large amount of antibiotic with formation of smaller amounts of side byproducts. This could be especially attractive for decreasing the complexity and cost of the downstream processing, enhancing CA production.
The present study investigated the essential oil obtained from Campomanesia guazumifolia (Cambess.) O. Berg, an aromatic plant used in Brazilian folk medicine. The chemical composition was performed by GC×GC/qMS. The antioxidant and antimicrobial activities were evaluated by DPPH and BCB and, MIC assays, respectively. Sixty-eight compounds were identified in the oil, where the major compounds were bicyclogermacrene (15%), globulol (5%) and spathulenol (5%). Sesquiterpene hydrocarbons (29 compounds) and oxygenated sesquiterpenes (20 compounds) were the most representative classes of terpenes. DPPH (IC50 value 26.1 ± 0.5 μg/mL) and BCB (68.3 ± 1.5%) values indicated a significant antioxidant activity. The essential oil strongly inhibited Staphylococcus aureus (MIC 15 ± 0.1 μg/mL), Escherichia coli (MIC 25 ± 0.2 μg/mL) and Candida albicans (MIC 5 ± 0.1 μg/mL). The results give a deeper understanding of the chemical composition and report for the first time the antioxidant and antimicrobial potential of the C. guazumifolia essential oil. 相似文献
Polyaniline is a model molecular system in the study of conductive polymers. Ionic liquids, on the other hand, are becoming more and more a very convenient alternative for conventional organic solvents. The dissolution of polyaniline‐emeraldine base (PANI‐EB) in imidazolium ILs leads to its doping, as indicated by optical and resonance Raman spectroscopies. In this study, it is proposed that the interaction of PANI‐EB and imidazolium ILs involves the specific interaction of the quinoid moiety of the former with the imidazolium ring of the latter, an interpretation that is also based on N K‐edge XANES measurements of neat PANI‐EB, neat ILs, and of their solutions.