首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   887篇
  免费   27篇
  国内免费   3篇
化学   523篇
晶体学   7篇
力学   25篇
数学   69篇
物理学   293篇
  2023年   7篇
  2022年   11篇
  2021年   16篇
  2020年   12篇
  2019年   22篇
  2018年   17篇
  2017年   23篇
  2016年   30篇
  2015年   19篇
  2014年   28篇
  2013年   45篇
  2012年   72篇
  2011年   86篇
  2010年   39篇
  2009年   50篇
  2008年   57篇
  2007年   51篇
  2006年   47篇
  2005年   49篇
  2004年   29篇
  2003年   22篇
  2002年   19篇
  2001年   8篇
  2000年   12篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   13篇
  1992年   5篇
  1991年   5篇
  1989年   3篇
  1987年   6篇
  1986年   7篇
  1985年   8篇
  1984年   10篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有917条查询结果,搜索用时 703 毫秒
71.
Self‐assembly of the naturally occurring sweetening agent, glycyrrhizic acid (GA) in water is studied by small‐angle X‐ray scattering and microscopic techniques. Statistical analysis on atomic force microscopy images reveals the formation of ultralong GA fibrils with uniform thickness of 2.5 nm and right‐handed twist with a pitch of 9 nm, independently of GA concentration. Transparent nematic GA hydrogels are exploited to create functional hybrid materials. Two‐fold and three‐fold hybrids are developed by introducing graphene oxide (GO) and in situ‐synthesized gold nanoparticles (Au NPs) in the hydrogel matrix for catalysis applications. In the presence of GO, the catalytic efficiency of Au NPs in the reduction of p‐nitrophenol to p‐aminophenol is enhanced by 2.5 times. Gold microplate single crystals are further synthesized in the GA hydrogel, expanding the scope of these hybrids and demonstrating their versatility in materials design.  相似文献   
72.
Conjugated polymer nanoparticles based on poly[9,9‐bis(2‐ethylhexyl)fluorene] and poly[N‐(2,4,6‐trimethylphenyl)‐N,N‐diphenylamine)‐4,4′‐diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2′‐bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye‐coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle‐dye hybrids. It is proposed that the excited state electron transfer from the electron‐rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed‐electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir‐based triplet emitting dye as the guest.

  相似文献   

73.
The wall static pressure in the vicinity of drag reducing outer layer devices in flat wall turbulent boundary layers has been measured and compared with an inviscid theory. Symmetric and cambered airfoil devices have been examined at small angles of attack and very low chord Reynolds numbers. Airfoil devices impose a sequence of strong favorable and adverse pressure gradients on the boundary layer whose drag is to be reduced. At very small angles of attack (± 2°), this pressure field extends up to about three chord lengths downstream of the trailing edge of an airfoil device. Also examined are the pressures on the upper and lower surfaces of a symmetric airfoil device in the freestream and near the wall. The freestream pressure distribution around an airfoil section is altered by the wall proximity. The relevance of lift enhancement caused by wall proximity to drag reduction has been discussed. The pressure distributions on the flat wall beneath the symmetric airfoil devices are predicted well by the inviscid theory. However, the remaining pressure distributions are predicted only qualitatively, presumably because of strong viscous effects.  相似文献   
74.
Electronic nose systems when deployed in network mesh can effectively provide a low budget and onsite solution for the industrial obnoxious gaseous measurement. For accurate and identical prediction capability by all the electronic nose systems, a reliable calibration transfer model needs to be implemented in order to overcome the inherent sensor array variability. In this work, robust regression (RR) is used for calibration transfer between two electronic nose systems using a Box–Behnken (BB) design. Out of the two electronic nose systems, one was trained using industrial gas samples by four artificial neural network models, for the measurement of obnoxious odours emitted from pulp and paper industries. The emissions constitute mainly of hydrogen sulphide (H2S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS) in different proportions. A Box–Behnken design consisting of 27 experiment sets based on synthetic gas combinations of H2S, MM, DMS and DMDS, were conducted for calibration transfer between two identical electronic nose systems. Identical sensors on both the systems were mapped and the prediction models developed using ANN were then transferred to the second system using BB–RR methodology. The results showed successful transmission of prediction models developed for one system to other system, with the mean absolute error between the actual and predicted concentration of analytes in mg L−1 after calibration transfer (on second system) being 0.076, 0.1801, 0.0329, 0.427 for DMS, DMDS, MM, H2S respectively.  相似文献   
75.
This work describes a general approach for preventing protein aggregation and surface adsorption by modifying proteins with β-cyclodextrins (βCD) via an efficient water-driven ligation. As compared to native unmodified proteins, the cyclodextrin-modified proteins (lysozyme and RNase A) exhibit significant reduction in aggregation, surface adsorption and increase in thermal stability. These results reveal a new chemistry for preventing protein aggregation and surface adsorption that is likely of different mechanisms than that by modifying proteins with poly(ethylene glycol).  相似文献   
76.
The physicochemistry of interaction of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) with the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate was studied in detail using tensiometry, turbidimetry, calorimetry, viscometry, dynamic light scattering (DLS), and scanning electron microscopy (SEM). Fair interaction initially formed induced small micelles of the surfactants and later on produced free normal micelles in solution. The interaction process yielded coacervates that initially grew by aggregation in the aqueous medium and disintegrated into smaller species at higher surfactant concentration. The phenomena observed were affected by the presence of isopropyl alcohol (IP) in the medium. The hydrodynamic sizes of the dispersed polymer and its surfactant-interacted species were determined by DLS measurements. The surface morphologies of the solvent-removed PDADMAC and its surfactant-interacted complexes from water and IP-water media were examined by the SEM technique. The morphologies witnessed different patterns depending on the composition and the solvent environment. The head groups of the dodecyl chain containing surfactants made differences in the interaction process.  相似文献   
77.
Protein-DNA binding is an important process responsible for the regulation of genetic activities in living organisms. The most crucial issue in this problem is how the protein recognizes the DNA and identifies its target base sequences. Water molecules present around the protein and DNA are also expected to play an important role in mediating the recognition process and controlling the structure of the complex. We have performed atomistic molecular dynamics simulations of an aqueous solution of the protein-DNA complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. The conformational fluctuations of the protein and DNA and the microscopic structure and ordering of water around them in the complex have been explored. In agreement with experimental studies, the calculations reveal conformational immobilization of the terminal segments of the protein on complexation. Importantly, it is discovered that both structural adaptations of the protein and DNA, and the subsequent correlation between them to bind, contribute to the net entropy loss associated with the complex formation. Further, it is found that water molecules around the DNA are more structured with significantly higher density and ordering than that around the protein in the complex.  相似文献   
78.
We present a method called local environment kinetic Monte Carlo (LE-KMC) method for efficiently performing off-lattice, self-learning kinetic Monte Carlo (KMC) simulations of activated processes in material systems. Like other off-lattice KMC schemes, new atomic processes can be found on-the-fly in LE-KMC. However, a unique feature of LE-KMC is that as long as the assumption that all processes and rates depend only on the local environment is satisfied, LE-KMC provides a general algorithm for (i) unambiguously describing a process in terms of its local atomic environments, (ii) storing new processes and environments in a catalog for later use with standard KMC, and (iii) updating the system based on the local information once a process has been selected for a KMC move. Search, classification, storage and retrieval steps needed while employing local environments and processes in the LE-KMC method are discussed. The advantages and computational cost of LE-KMC are discussed. We assess the performance of the LE-KMC algorithm by considering test systems involving diffusion in a submonolayer Ag and Ag-Cu alloy films on Ag(001) surface.  相似文献   
79.
Formation of protein-DNA complex is an important step in regulation of genes in living organisms. One important issue in this problem is the role played by water in mediating the protein-DNA interactions. In this work, we have carried out atomistic molecular dynamics simulations to explore the heterogeneous dynamics of water molecules present in different regions around a complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. It is demonstrated that such heterogeneous water motions around the complex are correlated with the relaxation time scales of hydrogen bonds formed by those water molecules with the protein and DNA. The calculations reveal the existence of a fraction of extraordinarily restricted water molecules forming a highly rigid thin layer in between the binding motifs of the protein and DNA. It is further proved that higher rigidity of water layers around the complex originates from more frequent reformations of broken water-water hydrogen bonds. Importantly, it is found that the formation of the complex affects the transverse and longitudinal degrees of freedom of surrounding water molecules in a nonuniform manner.  相似文献   
80.
Three new bicomponent hydrogels of riboflavin (R) with salicylic acid (S), dihydroxybenzoic acid (B) and acetoguanamine (D) in 1:1 molar ratio have been reported. FTIR and UV-vis spectra suggest formation of H-bonded complexes in 1:1 molar ratio of the components. The network consists of tape, bar and helical tubes for RB11, RS11 and RD11 systems, respectively. Reversible first order phase transition and invariant storage modulus (G') with angular frequency (ω) characterise the systems as forming thermoreversible hydrogels. The RD11 gel has the highest gel melting temperature and highest critical strain compared to other gels. WAXS study indicates different crystal structures for different gels. NMR spectra reveals higher shielding of protons in RD11 gel suggesting better π-stacking compared to RS11 and RB11 gels. RD11 gel shows two-fold enhancement of photoluminescence (PL) intensity with a substantial red shift of emission peak but RB11 and RS11 gels show PL-quenching. The gels exhibit a small decrease in lifetime and the PL property is very much temperature and pH dependent. So the complementary molecules have a pronounced effect on morphology, structure, stability and optical property of riboflavin gels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号