首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
化学   15篇
晶体学   2篇
数学   3篇
物理学   26篇
  2018年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
排序方式: 共有46条查询结果,搜索用时 46 毫秒
31.
The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. Finding no evidence to support the detection of GWs, we present 90% confidence level (C.L.) upper-limit maps of GW strain power with typical values between 2-20×10(-50) strain(2)?Hz(-1) and 5-35×10(-49) strain(2)?Hz(-1)?sr(-1) for pointlike and extended sources, respectively. The latter result is the first of its kind. We also set 90% C.L. limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN 1987A and the Galactic center as low as ≈7×10(-25) in the most sensitive frequency range near 160 Hz.  相似文献   
32.
Second-generation interferometric gravitational-wave detectors will operate at temperatures noticeably above room temperature. Study was done to determine what effect elevated temperatures would have on the Q and coating thermal noise of the detector mirrors. Results show that increased temperature increases loss angle in a manner that is more significant at higher frequencies. Trends show that the increased temperature will have a negligible effect at the low (100 Hz) frequencies important to second-generation detectors.  相似文献   
33.
Interactions between O(2) and CeO(2) are examined experimentally using in situ Raman spectroscopy and theoretically using density-functional slab-model calculations. Two distinct oxygen bands appear at 825 and 1131 cm(-1), corresponding to peroxo- and superoxo-like species, respectively, when partially reduced CeO(2) is exposed to 10 % O(2). Periodic density-functional theory (DFT) calculations aid the interpretation of spectroscopic observations and provide energetic and geometric information for the dioxygen species adsorbed on CeO(2). The O(2) adsorption energies on unreduced CeO(2) surfaces are endothermic (0.91相似文献   
34.
35.

Background

The anti-inflammatory properties of some flavonoids have been attributed to their ability to inhibit the production of NO by activated macrophages. Soybean cotyledons accumulate certain flavonoids following elicitation with an extract of the fungal pathogen Diaporthe phaseolorum f. sp. meridionalis (Dpm). Sodium nitroprusside (SNP), a nitric oxide donor, can substitute for Dpm in inducing flavonoid production. In this study, we investigated the effect of flavonoid-containing diffusates obtained from Dpm- and SNP-elicited soybean cotyledons on NO production by lipopolysaccharide (LPS)- and LPS plus interferon-γ (IFNγ)-activated murine macrophages.

Results

Significant inhibition of NO production, measured as nitrite formation, was observed when macrophages were activated in the presence of soybean diffusates from Dpm- or SNP-elicited cotyledons. This inhibition was dependent on the duration of exposure to the elicitor. Daidzein, genistein, luteolin and apigenin, the main flavonoids present in diffusates of elicited cotyledons, suppressed the NO production by LPS + IFNγ activated macrophages in a concentration-dependent manner, with IC50 values of 81.4 μM, 34.5 μM, 38.6 μM and 10.4 μM respectively. For macrophages activated with LPS alone, the IC50 values were 40.0 μM, 16.6 μM, 10.4 μM and 2.8 μM, respectively. Western blot analysis showed that iNOS expression was not affected by daidzein, was reduced by genistein, and was abolished by apigenin, luteolin and Dpm- and SNP-soybean diffusates at concentrations that significantly inhibited NO production by activated macrophages.

Conclusions

These results suggest that the suppressive effect of flavonoids on iNOS expression could account for the potent inhibitory effect of Dpm- and SNP-diffusates on NO production by activated macrophages. Since the physiological concentration of flavonoids in plants is normally low, the treatment of soybean tissues with SNP may provide a simple method for substantially increasing the concentration of metabolites that are beneficial for the treatment of chronic inflammatory diseases associated with NO production.
  相似文献   
36.
In order to gain further insight into the surface chemistry of AlGaAs growth by metalorganic molecular beam epitaxy, we have investigated the deposition behavior and material quality of AlGaAs grown at temperatures from 350 to 500°C using trimethylamine alane (TMAA), triethylgallium (TEG) and arsine (AsH3). Though the Al incorporation rate decreases with decreasing temperature, Ga-alkyl pyrolysis, and hence Ga incorporation rate, declines more rapidly. Thus the Al content increases from XAlAs = 0.25 at 500°C to XAlAs = 0.57 at 350°C. Below 450°C, the Ga incorporation rate appears to be determined by the desorption of diethylgallium species, rather than interaction with adsorbed AlH3. Similarly, carbon incorporation is enhanced by 2 orders of magnitude over this temperature range due to the increasingly inefficient pyrolysis of the Ga-C bond in TEG. Additionally, active hydrogen from the TMAA1, which normally is thought to getter the surface alkyls, is possibly less kinetically active at lower growth temperatures. Contrary to what has been observed in other growth methods, low growth temperatures produced a slight decrease in oxygen concentration. This effect is likely due to reduced interaction between Ga alkoxides (inherent in the TEG) and the atomic hydrogen blocked Al species on the growth surface. This reduction in oxygen content and increase in carbon concentration causes the room temperature PL intensity to actually increase as the temperature is reduced from 500 to 450°C. Surprisingly, the crystalline perfection as measured by ion channeling analysis is quite good, χmin≤5%, even at growth temperatures as low as 400°C. At 350°C, the AlGaAs layers exhibit severe disorder. This disorder is indicative of insufficient Group III surface mobility, resulting in lattice site defects. The disorder also supports our conclusions of kinetically limited surface mobility of all active surface components.  相似文献   
37.
In this paper, we will discuss how the unique growth chemistry of MOMBE can be used to produce high speed GaAs/AlGaAs heterojunction bipolar transistors (HBTs). The ability to grow heavily doped, well-confined layers with carbon doping from trimethylgallium (TMG) is a significant advantage for this device. However, in addition to high p-type doping, high n-type doping is also required. While elemental Sn can be used to achieve doping levels up to 1.5×1019 cm-3, severe segregation limits its use to surface contact layers. With tetraethyltin (TESn), however, segregation does not occur and Sn doping can be used throughout the device. Using these sources along with triethylgallium (TEG), trimethylamine alane (TMAA), and AsH3, we have fabricated Npn devices with 2 μm×10 μm emitter stripes which show gains of ≥ 20 with either ƒt = 55 GHz and ƒmax = 70 GHz or ƒt = 70 GHz and ƒmax = 50 GHz, depending upon the structure. These are among the best RF values reported for carbon doped HBTs grown by any method, and are the first reported for an all-gas source MOMBE process. In addition, we have fabricated a 70 transistor decision circuit whose performance at 10 Gb/s equals or exceeds that of similar circuits made from other device technologies and growth methods. These are the first integrated circuits reported from MOMBE grown material.  相似文献   
38.
Gallium Nitride (GaN) and related materials (especially AlGaN) recently have attracted a lot of interest for applications in high-power electronics capable of operation at elevated temperatures and high frequencies. The AlGaInN system offers numerous advantages. These include wide bandgaps, good transport properties, the availability of heterostructures (particularly AlGaN/GaN), the experience base gained by the commercialization of GaN-based laser and light-emitting diodes and the existence of a high growth rate epitaxial method (hydride vapor phase epitaxy, HVPE) for producing very thick layers or even quasisubstrates. These attributes have led to rapid progress in the realization of a broad range of GaN electronic devices. AlxGa1-xN (x=0 ~.25) Schottky rectifiers were fabricated in a lateral geometry employing p+-implanted guard rings and rectifying contact overlap onto an SiO2 passivation layer. The reverse breakdown voltage (VB) increased with the spacing between Schottky and ohmic metal contacts, reaching 9700 V for Al0.25Ga0.75N and 6350 V for GaN, respectively, for 100-µm gap spacing. Assuming lateral depletion, these values correspond to breakdown field strengths of <9.67×105 Vcm?2, which is roughly a factor of 5 lower than the theoretical maximum in bulk GaN. The figure of merit (VB)2/RON, where RON is the on-state resistance, was in the range 94 to 268 MWcm?2 for all the devices. Edge-terminated Schottky rectifiers were also fabricated on quasibulk GaN substrates grown by HVPE. For small-diameter (75?µm) Schottky contacts, Vs measured in the vertical geometry was ~700?V, with an on-state resistance (RON) of 3?mΩcm2, producing a figure-of-merit VB 2/RON of 162.8?MW-cm?2. GaN p-i-n diodes were also fabricated. A direct comparison of GaN p-i-n and Schottky rectifiers fabricated on the same GaN wafer showed higher reverse breakdown voltage for the former (490?V vs. 347?V for the Schottky diodes), but lower forward turn-on voltages for the latter (~3.5?V vs. ~5?V for the p-i-n diodes). The forward I-V characteristics of the p-i-n rectifiers show behavior consistent with a multiple recombination center model. The reverse current in both types of rectifiers was dominated by surface perimeter leakage at moderate bias. Finally, all of the devices we fabricated showed negative temperature coefficients for reverse breakdown voltage, which is a clear disadvantage for elevated temperature operation. Bipolar devices are particularly interesting for high current applications such as microwave power amplifiers for radar, satellite, and communication in the l~5?GHz range, powers >l00?W, and operating temperatures >425°C. pnp Bipolar Junction Transistors and pnp Heterojunction Bipolar Transistors were demonstrated for the first time. For power microwave applications, small area self-aligned npn GaN/AlGaN HBTs were attempted. The devices showed very promising direct current characteristics.  相似文献   
39.
We have studied the static and dynamic behaviour of magnetic colloidal systems (ferrofluids) by Small-Angle X-ray Scattering (SAXS) and X-ray Photon Correlation Spectroscopy (XPCS). The main features of the novel XPCS technique will be illustrated by data taken on a model system, colloidal silica spheres. We will then present the results obtained on an optically opaque suspension of magnetic colloids (maghemite) in the wave vector range from 10-3 to 10-2?^-1. Translational diffusion in zero field and anisotropic diffusion under external magnetic fields will be discussed. Received 9 August 1999 and Received in final form 26 July 2000  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号