首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   14篇
  国内免费   4篇
化学   136篇
晶体学   2篇
力学   5篇
数学   23篇
物理学   26篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   11篇
  2014年   15篇
  2013年   14篇
  2012年   22篇
  2011年   14篇
  2010年   10篇
  2009年   11篇
  2008年   14篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1994年   1篇
排序方式: 共有192条查询结果,搜索用时 31 毫秒
91.
Thermal energy storage units conventionally have the drawback of slow charging response. Thus, heat transfer enhancement techniques are required to reduce charging time. Using nanoadditives is a promising approach to enhance the heat transfer and energy storage response time of materials that store heat by undergoing a reversible phase change, so-called phase change materials. In the present study, a combination of such materials enhanced with the addition of nanometer-scale graphene oxide particles (called nano-enhanced phase change materials) and a layer of a copper foam is proposed to improve the thermal performance of a shell-and-tube latent heat thermal energy storage (LHTES) unit filled with capric acid. Both graphene oxide and copper nanoparticles were tested as the nanometer-scale additives. A geometrically nonuniform layer of copper foam was placed over the hot tube inside the unit. The metal foam layer can improve heat transfer with an increase of the composite thermal conductivity. However, it suppressed the natural convection flows and could reduce heat transfer in the molten regions. Thus, a metal foam layer with a nonuniform shape can maximize thermal conductivity in conduction-dominant regions and minimize its adverse impacts on natural convection flows. The heat transfer was modeled using partial differential equations for conservations of momentum and heat. The finite element method was used to solve the partial differential equations. A backward differential formula was used to control the accuracy and convergence of the solution automatically. Mesh adaptation was applied to increase the mesh resolution at the interface between phases and improve the quality and stability of the solution. The impact of the eccentricity and porosity of the metal foam layer and the volume fraction of nanoparticles on the energy storage and the thermal performance of the LHTES unit was addressed. The layer of the metal foam notably improves the response time of the LHTES unit, and a 10% eccentricity of the porous layer toward the bottom improved the response time of the LHTES unit by 50%. The presence of nanoadditives could reduce the response time (melting time) of the LHTES unit by 12%, and copper nanoparticles were slightly better than graphene oxide particles in terms of heat transfer enhancement. The design parameters of the eccentricity, porosity, and volume fraction of nanoparticles had minimal impact on the thermal energy storage capacity of the LHTES unit, while their impact on the melting time (response time) was significant. Thus, a combination of the enhancement method could practically reduce the thermal charging time of an LHTES unit without a significant increase in its size.  相似文献   
92.
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors.  相似文献   
93.
A simple and efficient procedure for the preparation of silica-bonded propylpiperazine-N-sulfamic acid (SBPPSA) by the reaction of 3-piperazine-N-propylsilica (3-PNPS) and chlorosulfonic acid in chloroform is described. Silica-bonded propylpiperazine-N-sulfamic acid is employed as a recyclable catalyst for the synthesis of highly substituted imidazoles from the reaction of benzil, aromatic aldehydes, ammonium acetate and amines under solvent-free conditions. The heterogeneous catalyst was recycled for five runs upon the reaction of benzil, 4-methylbenzaldehyde, benzylamine, and ammonium acetate without losing its catalytic activity.  相似文献   
94.
The major environmental factor limiting the range of adaptation for wheat is drought. Fourteen wheat genotypes (Triticum aestivum L.) were grown under two environments (irrigated and rain fed) to determine physiological and photosynthetic responses to drought. Combined analysis of variance of the data showed that the environment was a significant source of variation for leaf chlorophyll content (LCC), stomatal conductance (g(s)) and grain yield (GY). Wheat genotypes differed significantly for LCC, g(s) and GY. All the measured traits under water-stress conditions except maximum photochemical efficiency of PSII (F(v)/F(m)) were lower than those under nonstress conditions. Mean GY in rain-fed conditions was 11.26% lower than that in irrigated conditions. The genotypes number 13 (Marvdasht) and 8 (M-81-13) exhibited the highest GY per unit area in both irrigation and rain-fed conditions. It was concluded that the higher LCC and g(s) under drought-stress conditions could possibly be the proper criteria for screening the drought-tolerant wheat genotypes under field conditions.  相似文献   
95.

Abstract  

The curing behavior of the glycerol diglycidyl ether/3,3-dimethylglutaric anhydride/nano-alumina system was examined using a dynamic differential scanning calorimetry technique. The activation energy of the system was calculated using the Kissinger, Ozawa, Barrett, and two-parameter Sestak–Berggren models. Under the assumption of a constant activation energy and an autocatalytic mechanism, the activation energy, frequency factor, and total order of reaction were computed. The theoretical reaction rate was also calculated and compared to the experimental results. Good agreement was seen between the experimental and calculated data confirming the autocatalytic mechanism. The effect of triethylamine concentration on the reaction rate was clarified using the Barrett method. Fourier transform infrared spectroscopy (FT-IR) spectroscopy was used to verify the formation of internal ester groups. Scanning electron microscopy (SEM) and X-ray mapping analyses revealed that the nanofiller was homogeneously distributed in the continuous phase.  相似文献   
96.
A simple and efficient procedure for the preparation of silica-bound N-propyl triethylenetetramine sulfamic acid(SBPTETSA) by the reaction of silica-bound N-propyl triethylenetetramine(SBPTET) with chlorosulfonic acid in chloroform is described.Silica-bound N-propyl triethylenetetramine sulfamic acid was employed as a recyclable catalyst for the synthesis of 2-amino-4,6-diarylnicotinonitriles from the multi-component reaction of an acetophenone derivative,an aromatic aldehyde,malononitrile,and ammonium acetate under solvent-free conditions at 100 °C.The heterogeneous catalyst was recycled for five consecutive runs in the optimized multi-component reaction of 4-chloroacetophenone,4-chloroenzaldehyde,malononitrile,and ammonium acetate without significant loses to its catalytic activity.  相似文献   
97.
In this numerical study, we present and demonstrate a compact, electrical plasmonic beam-steering device composed of anisotropic material. The splitting angle can be modulated by the external electric or magnetic field. The physical principle of this phenomenon is evaluated from the phase of surface plasmon polaritons and Fabry-Perot (F-P) resonance in slits. Our numerical simulations with finite-difference time-domain (FDTD) technique reveals that wide-angle (±27°) beam steering can be achieved. Moreover, the efficiency increases when increasing the steering angle. A special characteristic of the presented structure gives an opportunity to be used as an efficient element in a high integrated optical device for miniaturization and tuning purposes.  相似文献   
98.
99.
A Roman dominating function on a graph G = (VE) is a function f : V ? {0, 1, 2}f : V \rightarrow \{0, 1, 2\} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ?v ? V f(v)w(f) = \sum_{v\in V} f(v). The Roman domination number of a graph G, denoted by gR(G)_{\gamma R}(G), equals the minimum weight of a Roman dominating function on G. The Roman domination subdivision number sdgR(G)sd_{\gamma R}(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the Roman domination number. In this paper, first we establish upper bounds on the Roman domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that $1 \leq sd_{\gamma R}(G) \leq 3$1 \leq sd_{\gamma R}(G) \leq 3. Finally, we show that the Roman domination subdivision number of a graph can be arbitrarily large.  相似文献   
100.
The synthesis and structural characterization of a novel generation of crown ethers, 3, 5 and 6 containing pyrilium, thiopyrilium, and pyridinium subunits, respectively, are reported. The crown ether unit is potentially capable of forming host-guest complexes with inorganic and organic cations, while the heteroaromatic cationic unit is suitable to bind with anions. A variety of physicochemical methods including electrospray mass spectrometry, UV-vis spectroscopy, solution and solid-phase NMR, and X-ray crystallography were applied for structural characterization of the new crown ether derivatives. The (1)H and (13)C NMR studies indicate rapid rotation of the B9C3 unit about the C-C bond that connects the two units to each other. Single crystals for 3, 4, and 5 were successfully obtained, and their X-ray crystal structures were resolved. The perchlorate anion in 3 (orthorhombic, space group P2(1)2(1)2(1)) and 5 (orthorhombic, space group P2(1)) is far from O(+) and close to S(+). The solid-phase structure of 3 and 5 show small deviation from planarity for the four aromatic rings, whereas two of the aromatic rings in 4 are out of heteroaromatic ring. Spectrophotometric studies in methanol solution revealed that the ligand 3 can be successfully applied to selective amino acid recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号