首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   17篇
  国内免费   2篇
化学   218篇
晶体学   1篇
力学   6篇
综合类   1篇
数学   21篇
物理学   89篇
  2024年   2篇
  2023年   7篇
  2022年   31篇
  2021年   40篇
  2020年   21篇
  2019年   20篇
  2018年   14篇
  2017年   5篇
  2016年   18篇
  2015年   13篇
  2014年   22篇
  2013年   22篇
  2012年   15篇
  2011年   10篇
  2010年   14篇
  2009年   14篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   11篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1995年   2篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1970年   1篇
  1966年   1篇
排序方式: 共有336条查询结果,搜索用时 281 毫秒
61.
The phenomena of heat and mass transfer during the flow of non-Newtonian transfer are amongst the core subjects in mechanical sciences. Recently, the nanomaterials are among the eminent tools for improving the low thermal conductivity of working fluids. Therefore, in view of the existing contributions, this article presents a two-dimensional numerical simulation for the transient flow of a non-Newtonian nanofluid generated by an expanding/contracting circular cylinder. This critical review further explores the impacts of variable magnetic field, thermal radiation, velocity slip and convective boundary conditions. The basic governing equations for Williamson fluid flow are formulated with the assistance of boundary layer approximations. The non-dimensional form of partially coupled ordinary differential equations has been tackled numerically by utilizing versatile Runge–Kutta integration scheme. The momentum, thermal and concentration characteristics are investigated with respect to several critical parameters, like, Weissenberg number, unsteadiness parameter, viscosity ratio parameter, slip parameter, suction parameter, magnetic parameter, thermophoresis parameter, Brownian motion parameter, Prandtl number, Lewis number and Biot number. The outcomes of the systematic reviews of these parameters and forest plots are illustrated. The study reveals that multiple solutions for the considered problem occurs for diverse values of involved physical parameters. The computed results indicate that the friction and heat transfer coefficients are significantly raised by the magnetic parameter for upper branch solutions.  相似文献   
62.
First-principles calculations were performed to investigate the structural, electronic, magnetic and optical properties of nitrogen (N) and magnesium (Mg) atom co-doped graphene systems. We observed that, N and Mg atom co-doping in graphene, introduces half-metallic properties in the electronic structure of graphene, introduces ferromagnetism behavior along with new trends in optical properties of graphene. Doping site and concentration of N and Mg atoms in graphene was changed and resulting effects of these changes on aforementioned properties were investigated. Through density of states plots we observed that, Mg atom sp orbitals mainly induced magnetic moments in graphene. It was revealed that, N/Mg atoms substitution in graphene introduces a red shift in absorption spectrum towards visible range and a finite absorption coefficient quantity value in 0 to 3 eV and 7 to 11 eV energy intervals is also produced, that is unavailable for absorption spectrum of intrinsic graphene. Moreover, N/Mg atoms co-doping produces increment in the reflectivity parameter of graphene in low lying energy region, while producing diminishing behavior in the higher energy range. These results offer a possibility to tune electronic, magnetic and optical characteristics of graphene sufficiently for utilization in graphene based spintronic and optoelectronic devices.  相似文献   
63.
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption. Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method (HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.  相似文献   
64.
H Farooq  M Sarfraz  Z Iqbal  G Abbas  H A Shah 《中国物理 B》2017,26(11):110301-110301
The dispersion relations of parallel propagating modes(Langmuir mode, right and left handed circular polarized waves) in the weak magnetic field limit |ω-k·v| ? are considered for ultra-relativistic arbitrary degenerate electron plasma. The results are presented in terms of moments of Fermi-Dirac distribution. The increase in the electron equilibrium number density from negative large(weakly degenerate) to positive large(highly degenerate) values of μ/T_e is observed(where μ is the electron chemical potential and T_e is the electron thermal energy). As a result, shifting of the cutoff points in all the real dispersion branches towards the higher values and increasing in the band gap between unmagnetized longitudinal and transverse modes in k-space are examined. Also, the suppression of the weak magnetic field effects in weakly magnetized right handed and left handed circular polarized waves and a decrease in the longitudinal and transverse screening effects are observed in the graphical patterns due to an increase in the equilibrium number density.  相似文献   
65.
Novel trisubstituted ethylenes, alkyl and alkoxy ring-disubstituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is 2,3-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy 3,4-dimethoxy, 3,5-dimethoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (0.6–5.0% wt.), which then decomposed in the 500–800°C range.  相似文献   
66.
This study appraises the antioxidant and antimicrobial attributes of various solvent extracts (absolute methanol, aqueous methanol, absolute ethanol, aqueous ethanol, absolute acetone, aqueous acetone, and deionized water) from bark, leaves and seeds of Pongamia pinnata (L.) Pierre. Maximum extraction yield of antioxidant components from bark (16.31%), leaves (11.42%) and seeds (21.51%) of P. pinnata was obtained using aqueous methanol (20:80). Of the extracts tested, the bark extract, obtained with aqueous methanol, exhibited greater levels of total phenolics [6.94 g GAE/100 g dry weight (DW)], total flavonoids (3.44 g CE/100 g DW), inhibition of linoleic acid peroxidation (69.23%) and DPPH radical scavenging activity (IC(50) value, 3.21 μg/mL), followed by leaves and seeds extracts. Bark extract tested against a set of bacterial and fungal strains also revealed the strongest antimicrobial activity with the largest inhibition zone and lowest minimum inhibitory concentration (MIC). HPLC analysis of aqueous methanol extracts from bark, leaves and seeds indicated the presence of protocatechuic, ellagic, ferulic, gallic, gentisic, 4-hydroxybenzoic and 4-hydroxycinnamic acids in bark (1.50-6.70 mg/100 g DW); sorbic, ferulic, gallic, salicylic and p-coumaric acids in leaves (1.18-4.71 mg/100 g DW); vanillic, gallic and tannic acids in seeds (0.52-0.65 mg/100 g DW) as the main phenolic acids. The present investigation concludes that the tested parts of P. pinnata, in particular the bark, have strong potential for the isolation of antioxidant and antimicrobial agents for functional food and pharmaceutical uses.  相似文献   
67.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   
68.
Based on the functional properties of electrospun cellulose nanofibers(CNF), scientists are showing substantial interest to enhance the aesthetic properties. However, the lower color yield has remained a big challenge due to the higher surface area of nanofibers. In this study, we attempted to improve the color yield properties of CNF by the pad-steam dyeing method. Neat CNF was obtained by deacetylation of electrospun cellulose acetate(CA) nanofibers. Three different kinds of reactive dyes were used and pad-steam dyeing parameters were optimized. SEM images revealed smooth morphology with an increase in the average diameter of nanofibers. FTIR results showed no change in the chemical structure after dyeing of CNF. Color fastness results demonstrated excellent ratings for reactive dyes, which indicate good dye fixation properties and no color loss during the washing process. The results confirm that the pad-steam dyeing method can be potentially considered to improve the aesthetic properties of CNF, which can be utilized for functional garments, such as breathable raincoats and disposable face masks.  相似文献   
69.
Oxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models. The treated animals were subjected to behavioural tests i.e., Y-maze and Morris water maze (MWM) for memory dysfunction. The underlying mechanism was determined via western blotting, antioxidant enzymes and lipid profile analyses. Molecular docking studies were carried out to predict the binding modes of friedelin in the binding pocket of p-JNK protein. The results reveal that scopolamine caused oxidative stress by (1) inhibiting catalase (CAT), peroxidase enzyme (POD), superoxide dismutase (SOD), and reduced glutathione enzyme (GSH); (2) the up-regulation of thiobarbituric acid reactive substances (TBARS) in mice brain; and (3) affecting the neuronal synapse (both pre- and post-synapse) followed by associated memory dysfunction. In contrast, friedelin administration not only abolished scopolamine-induced oxidative stress, glial cell activation, and neuro-inflammation but also inhibited p-JNK and NF-κB and their downstream signaling molecules. Moreover, friedelin administration improved neuronal synapse and reversed scopolamine-induced memory impairment accompanied by the inhibition of β-secretase enzyme (BACE-1) to halt amyloidogenic pathways of amyloid-β production. In summary, all of the results show that friedelin is a potent naturally isolated neuro-therapeutic agent to reverse scopolamine-induced neuropathology, which is characteristic of Alzheimer’s disease.  相似文献   
70.
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors with high mortality. Chronic hepatitis B and C viruses, aflatoxins, and alcohol are among the most common causes of hepatocellular carcinoma. The limited reported data and multiple spectra of pathophysiological mechanisms of HCC make it a challenging task and a serious economic burden in health care management. Solanum surattense (S. surattense) is the herbal plant used in many regions of Asia to treat many disorders including various types of cancer. Previous in vitro studies revealed the medicinal importance of S. surattense against hepatocellular carcinoma. However, the exact molecular mechanism of S. surattense against HCC still remains unclear. In vitro and in silico experiments were performed to find the molecular mechanism of S. surattense against HCC. In this study, the network pharmacology approach was used, through which multi-targeted mechanisms of S. surattense were explored against HCC. Active ingredients and potential targets of S. surattense found in HCC were figured out. Furthermore, the molecular docking technique was employed for the validation of the successful activity of bioactive constituents against potential genes of HCC. The present study investigated the active “constituent–target–pathway” networks and determined the tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), Bcl-2-like protein 1(BCL2L1), estrogen receptor (ER), GTPase HRas, hypoxia-inducible factor 1-alpha (HIF1-α), Harvey Rat sarcoma virus, also known as transforming protein p21 (HRAS), and AKT Serine/Threonine Kinase 1 (AKT1), and found that the genes were influenced by active ingredients of S. surattense. In vitro analysis was also performed to check the anti-cancerous activity of S. surattense on human liver cells. The result showed that S. surattense appeared to act on HCC via modulating different molecular functions, many biological processes, and potential targets implicated in 11 different pathways. Furthermore, molecular docking was employed to validate the successful activity of the active compounds against potential targets. The results showed that quercetin was successfully docked to inhibit the potential targets of HCC. This study indicates that active constituents of S. surattense and their therapeutic targets are responsible for their pharmacological activities and possible molecular mechanisms for treating HCC. Lastly, it is concluded that active compounds of S. surattense act on potential genes along with their influencing pathways to give a network analysis in system pharmacology, which has a vital role in the development and utilization of drugs. The current study lays a framework for further experimental research and widens the clinical usage of S. surattense.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号