首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学   2篇
物理学   21篇
  2020年   1篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1983年   2篇
  1978年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
A rotating spiral zone plate was used to implement and measure the rotational Doppler effect for plane-polarized optical beams with helical wave front (optical vortices). The frequency shift was analyzed in terms of energy exchange between the beams and moving optical elements.  相似文献   
22.
Spatial characteristics of diffracted beams produced by the “fork” holograms from incident circular Laguerre-Gaussian modes are studied theoretically. The complex amplitude distribution of a diffracted beam is described by models of the Kummer beam or of the hypergeometric-Gaussian beam. Physically, in most cases its structure is formed under the influence of the divergent spherical wave originating from the discontinuity caused by the hologram’s groove bifurcation. Presence of this wave is manifested by the ripple structure in the near-field beam pattern and by the power-law amplitude decay at the beam periphery. Conditions when the divergent wave is not excited are discussed.The diffracted beam carries a screw wavefront dislocation (optical vortex) whose order equals to algebraic sum of the incident beam azimuthal index and the topological charge of the singularity imparted by the hologram. The input beam singularity can be healed when the above sum is zero. In such cases the diffracted beam can provide better energy concentration in the central intensity peak than the Gaussian beam whose initial distribution coincides with the Gaussian envelope of the incident beam. Applications are possible for generation of optical-vortex beams with prescribed properties and for analyzing the optical-vortex beams in problems of information processing.  相似文献   
23.
Special features of the optical-vortex (OV) beams generated by thick holographic elements (HE) with embedded phase singularity are considered theoretically. The volume HE structure is based on the 3D pattern of interference between an OV beam and a standard reference wave with regular wavefront. The incident beam diffraction is described within the framework of a linear single-scattering model in which the volume HE is represented by a set of parallel thin layers with the “fork” holographic structure. An explicit integral expression is derived for the complex amplitude distribution of the diffracted paraxial beam with OV. The numerical analysis demonstrates that the HE thickness may essentially influence not only selectivity and efficiency of the OV beam generation but also the amplitude and phase profile of the diffracted beam as well as regularities of its propagation. We have studied the generated OV morphology and laws of its evolution; in particular, the possibility of obtaining a circularly symmetric OV beam regardless of the diffraction angle is revealed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号