首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  国内免费   1篇
化学   9篇
力学   1篇
数学   2篇
物理学   20篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
排序方式: 共有32条查询结果,搜索用时 46 毫秒
31.
We have studied the effects of the isoelectronic substitution of Ru for Fe in polycrystalline samples of the spin density wave (SDW) material PrFeAsO. Crystal structures from powder X-ray diffraction at room temperature and transport properties from 2 to 300 K are reported. The SDW is completely suppressed upon Ru substitution. The distortion of the tetrahedral coordination environment of the transition metal site increases as the Ru concentration increases, which may be related to the absence of superconductivity above 2 K. Band structure calculations show that the larger size of Ru 4d orbitals is primarily responsible for the suppression of magnetism as Ru is substituted into the Fe layer. The experimental results indicate that long-ranged magnetic order of Pr moments is suppressed at Ru concentrations as low as 10%.  相似文献   
32.
Many important advances in the physics of strongly correlated electron systems have been driven by the development of new materials: for instance the filled skutterudites MT4X12 (M=alkali metal, alkaline earth, lanthanide, or actinide; T=Fe, Ru, or Os; X=P, As, or Sb), certain lanthanide and actinide intermetallic compounds such as URu2-xRexSi2 and CeTIn5 (T=Co, Rh, or Ir), and layered oxypnictides and related materials. These types of complex multinary d- and f-electron compounds have proven to be a vast reservoir of novel strongly correlated electron ground states and phenomena. In these materials, the occurrence of such a wide range of ground states and phenomena arises from a delicate interplay between competing interactions that can be tuned by partial or complete substitution of one element for another, as well as the application of pressure, and magnetic fields, resulting in rich and complex electronic phase diagrams in the hyperspace of temperature, chemical composition, pressure and magnetic field. It seems clear that this type of “materials driven physics” will continue to play a central role in the development of the field of strongly correlated electron systems in the future, through the discovery of new materials that exhibit unexpected phenomena and experiments on known materials in an effort to optimize their physical properties and test relevant theories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号