首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   1篇
化学   12篇
数学   1篇
物理学   10篇
  2012年   1篇
  2006年   1篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
AP Balachandran 《Pramana》2002,59(2):359-368
We review certain emergent notions on the nature of space-time from noncommutative geometry and their radical implications. These ideas of space-time are suggested from developments in fuzzy physics, string theory, and deformation quantization. The review focuses on the ideas coming from fuzzy physics. We find models of quantum space-time like fuzzy S 4 on which states cannot be localized, but which fluctuate into other manifolds like CP3. New uncertainty principles concerning such lack of localizability on quantum space-times are formulated. Such investigations show the possibility of formulating and answering questions like the probability of finding a point of a quantum manifold in a state localized on another one. Additional striking possibilities indicated by these developments is the (generic) failure of CPT theorem and the conventional spin-statistics connection. They even suggest that Planck’s ‘constant’ may not be a constant, but an operator which does not commute with all observables. All these novel possibilities arise within the rules of conventional quantum physics, and with no serious input from gravity physics.  相似文献   
12.
Electrospray ionization mass spectrometry (ESI-MS) is a powerful technique used for the identification and characterization of DNA polymorphisms. Continual improvement in instrument design assures high mass measurement accuracy, sensitivity, and resolving power. This work describes an eclectic array of enzymatic strategies we have invoked in order to detect single-nucleotide polymorphisms by ESI-MS, although other applications may be envisioned. One strategy combines the use of two enzymes, exonuclease III and lambda exonuclease, to provide a ladder of single-stranded DNA fragments for straightforward sequence identification by mass spectrometry. A second strategy combines restriction enzymes to screen for polymorphisms present within specific amplicons. Finally, we describe the use of stable-isotope-labeled nucleotides for the determination of length and base composition of a PCR product.  相似文献   
13.
14.
15.
16.
The advantages of the thermostable DNA polymerase from Thermococcus kodakaraensis (KOD) are demonstrated for PCR amplification with subsequent detection by mass spectrometry. Commonly used DNA polymerases for PCR amplification include those from Thermus aquaticus (Taq) and Pyrococcus furiosus (Pfu). A 116 base-pair PCR product derived from a vWA locus was amplified by Taq, Pfu, or KOD DNA polymerase and compared by agarose gel electrophoresis and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). KOD DNA polymerase demonstrated a 2- to 3-fold increase in PCR product formation compared to Pfu or Taq, respectively, and generated blunt-ended PCR product which allows facile interpretation of the mass spectrum. Additionally, we demonstrate the advantage of using high magnetic fields to obtain unit resolution of the same 116 base pair (approximately 72 kDa) PCR product at high m/z.  相似文献   
17.
An online database has been established in order to validate electrospray ionization mass spectrometry (ESI-MS) for genotyping and to publicize the procedures developed in our laboratory for the characterization of PCR products by ESI-MS. Genotypes derived from short tandem repeat (STR) loci that were obtained using ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) have been posted for fifteen members of the CEPH family 1362 pedigree. The website provides specific information such as PCR parameters, PCR product cleanup approaches, and ESI solution compositions to enable other laboratories to reproduce our data. Links are provided to related websites in an effort to integrate information regarding the CEPH family, STR genotyping, and mass spectrometry. The database, currently available at http://www.people.vcu.edu/ -dcmuddim/genotype/ will be routinely updated with genotypes from additional STR loci including PCR parameters as well as PCR cleanup strategies as further developments are completed.  相似文献   
18.
The experimental determination of average mass by mass spectrometry is limited for large molecules due to the negative bias introduced by the natural distribution of isotopic abundances. This results in the measurement of the top-of-centroid (ToC) as opposed to the true centroid. We have developed a practical correction factor that is applied to the ToC measurement to largely remove the systematic bias introduced by nature. The correction factor is calculated easily using the average molecular mass (<100 kDa) of the analyte molecule and the full-width half maximum resolving power (<3,500) of the measurement. In addition, an approach to calculating resolving power is described that accurately predicts resolving power achievable for Fourier transform ion cyclotron resonance (FT-ICR) mass analysis of large molecules. A combination of internal calibration with a dual-electrospray source and application of the correction factor to average mass measurements improved the mass error from 192.5 to -35.0 ppm for a 44 kDa PCR amplicon.  相似文献   
19.
20.
A universal dual-electrospray (ESI) source is demonstrated on a quadrupole orthogonal-accelerated time-of-flight mass spectrometer (Q-ToF-MS) for both genomic and proteomic applications. This facile source modification enables internal calibration for consistent mass measurements by a mainstream MS platform and requires no mixing of analyte and calibrant prior to ion formation. In this report, the dual-sprayer is demonstrated in the negative-ion mode for internal calibration of polymerase chain reaction (PCR) amplicons generated from synthetic and genomic templates as well as a proteolytic digest of a naturally phosphorylated protein. For all PCR amplicons, experimentally determined average mass measurements are well within the instrument specifications of better than 0.01%. For the proteolytic fragments of the phosphoprotein, average mass errors of the isotopically resolved peptides are better than 10 ppm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号