首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629979篇
  免费   5064篇
  国内免费   1634篇
化学   319274篇
晶体学   9241篇
力学   32040篇
综合类   27篇
数学   82999篇
物理学   193096篇
  2021年   5833篇
  2020年   6288篇
  2019年   7173篇
  2018年   9686篇
  2017年   9813篇
  2016年   13573篇
  2015年   7284篇
  2014年   12336篇
  2013年   27943篇
  2012年   21636篇
  2011年   25754篇
  2010年   19419篇
  2009年   19378篇
  2008年   24370篇
  2007年   24127篇
  2006年   21902篇
  2005年   19564篇
  2004年   18336篇
  2003年   16515篇
  2002年   16337篇
  2001年   17517篇
  2000年   13471篇
  1999年   10445篇
  1998年   8979篇
  1997年   8900篇
  1996年   8334篇
  1995年   7468篇
  1994年   7553篇
  1993年   7273篇
  1992年   7829篇
  1991年   8222篇
  1990年   7943篇
  1989年   7859篇
  1988年   7649篇
  1987年   7385篇
  1986年   7112篇
  1985年   9112篇
  1984年   9525篇
  1983年   7961篇
  1982年   8192篇
  1981年   7749篇
  1980年   7327篇
  1979年   7958篇
  1978年   8187篇
  1977年   8163篇
  1976年   8141篇
  1975年   7776篇
  1974年   7570篇
  1973年   7931篇
  1972年   5834篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
Settling of a large solid particle in bioconvection flow caused by gyrotactic microorganisms is investigated. The particle is released from the top of the bioconvection chamber; its settling pattern depends on whether it is released in the centre of the bioconvection plume or at its periphery. The Chimera method is utilized; a subgrid is generated around a moving particle. The method suggested by Liu and Wang (Comput. Fluid 2004; 33 :223–255) is further developed to account for the presence of a moving boundary in the streamfunction‐vorticity formulation using the finite‐difference method. A number of cases for different release positions of the particle are computed. It is demonstrated that bioconvection can either accelerate or decelerate settling of the particle depending on the initial position of the particle relative to the plume centre. It is also shown that the particle impacts bioconvection plume by changing its shape and location in the chamber. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
42.
We study initial boundary value problems for linear scalar evolutionpartial differential equations, with spatial derivatives ofarbitrary order, posed on the domain {t > 0, 0 < x <L}. We show that the solution can be expressed as an integralin the complex k-plane. This integral is defined in terms ofan x-transform of the initial condition and a t-transform ofthe boundary conditions. The derivation of this integral representationrelies on the analysis of the global relation, which is an algebraicrelation defined in the complex k-plane coupling all boundaryvalues of the solution. For particular cases, such as the case of periodic boundaryconditions, or the case of boundary value problems for even-orderPDEs, it is possible to obtain directly from the global relationan alternative representation for the solution, in the formof an infinite series. We stress, however, that there existinitial boundary value problems for which the only representationis an integral which cannot be written as an infinite series.An example of such a problem is provided by the linearized versionof the KdV equation. Similarly, in general the solution of odd-orderlinear initial boundary value problems on a finite intervalcannot be expressed in terms of an infinite series.  相似文献   
43.
The synthesis and characterization of a new homologous series of compounds, the 2-cyano-1,3-phenylene bis[4-(4-n-alkoxyphenyliminomethyl)benzoates] derived from 2-cyanoresorcinol is reported. All the compounds are enantiotropic mesogens and exhibit the fascinating B7 mesophase. The characterization of the mesophase was performed using polarizing optical microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical studies.  相似文献   
44.
There is a growing interest in developing numerical tools to investigate the onset of physical instabilities observed in experiments involving viscoelastic flows, which is a difficult and challenging task as the simulations are very sensitive to numerical instabilities. Following a recent linear stability analysis carried out in order to better understand qualitatively the origin of numerical instabilities occurring in the simulation of flows viscoelastic fluids, the present paper considers a possible extension for more complex flows. This promising method could be applied to track instabilities in complex (i.e. essentially non‐parallel) flows. In addition, results related to transient growth mechanism indicate that it might be responsible for the development of numerical instabilities in the simulation of viscoelastic fluids. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
45.
In the direct simulation Monte‐Carlo (DSMC) method for simulating rarefied gas flows, the velocities of simulator particles that cross a simulation boundary and enter the simulation space are typically generated using the acceptance–rejection procedure that samples the velocities from a truncated theoretical velocity distribution that excludes low and high velocities. This paper analyses an alternative technique, where the velocities of entering particles are obtained by extending the simulation procedures to a region adjacent to the simulation space, and considering the movement of particles generated within that region during the simulation time step. The alternative method may be considered as a form of acceptance–rejection procedure, and permits the generation of all possible velocities, although the population of high velocities is depleted with respect to the theoretical distribution. Nevertheless, this is an improvement over the standard acceptance–rejection method. Previous implementations of the alternative method gave a number flux lower than the theoretical number required. Two methods for obtaining the correct number flux are presented. For upstream boundaries in high‐speed flows, the alternative method is more computationally efficient than the acceptance–rejection method. However, for downstream boundaries, the alternative method is extremely inefficient. The alternative method, with the correct theoretical number flux, should therefore be used in DSMC computations in favour of the acceptance–rejection method for upstream boundaries in high‐speed flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
46.
47.
Large eddy simulations of two basic configurations (decay of isotropic turbulence, and the academic plane channel flow) with heat transfer have been performed comparing several convection numerical schemes, in order to discuss their ability to evaluate temperature fluctuations properly. Results are compared with the available incompressible heat transfer direct numerical simulation data. It is shown that the use of regularizing schemes (such as high order upwind type schemes) for the temperature transport equation in combination with centered schemes for momentum transport equation gives better results than the use of centred schemes for both equations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
48.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
49.
A high‐order accurate, finite‐difference method for the numerical solution of incompressible flows is presented. This method is based on the artificial compressibility formulation of the incompressible Navier–Stokes equations. Fourth‐ or sixth‐order accurate discretizations of the metric terms and the convective fluxes are obtained using compact, centred schemes. The viscous terms are also discretized using fourth‐order accurate, centred finite differences. Implicit time marching is performed for both steady‐state and time‐accurate numerical solutions. High‐order, spectral‐type, low‐pass, compact filters are used to regularize the numerical solution and remove spurious modes arising from unresolved scales, non‐linearities, and inaccuracies in the application of boundary conditions. The accuracy and efficiency of the proposed method is demonstrated for test problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号