全文获取类型
收费全文 | 675311篇 |
免费 | 5577篇 |
国内免费 | 1788篇 |
专业分类
化学 | 351903篇 |
晶体学 | 10198篇 |
力学 | 32155篇 |
综合类 | 19篇 |
数学 | 83452篇 |
物理学 | 204949篇 |
出版年
2021年 | 5654篇 |
2020年 | 6184篇 |
2019年 | 6972篇 |
2018年 | 9231篇 |
2017年 | 9351篇 |
2016年 | 13154篇 |
2015年 | 7377篇 |
2014年 | 12132篇 |
2013年 | 29169篇 |
2012年 | 22011篇 |
2011年 | 26443篇 |
2010年 | 19597篇 |
2009年 | 19390篇 |
2008年 | 24821篇 |
2007年 | 24796篇 |
2006年 | 22731篇 |
2005年 | 20355篇 |
2004年 | 18972篇 |
2003年 | 17050篇 |
2002年 | 16860篇 |
2001年 | 18684篇 |
2000年 | 14505篇 |
1999年 | 11267篇 |
1998年 | 9547篇 |
1997年 | 9490篇 |
1996年 | 8948篇 |
1995年 | 8093篇 |
1994年 | 8012篇 |
1993年 | 7742篇 |
1992年 | 8483篇 |
1991年 | 8851篇 |
1990年 | 8543篇 |
1989年 | 8512篇 |
1988年 | 8262篇 |
1987年 | 8147篇 |
1986年 | 7743篇 |
1985年 | 9910篇 |
1984年 | 10312篇 |
1983年 | 8666篇 |
1982年 | 9052篇 |
1981年 | 8532篇 |
1980年 | 8176篇 |
1979年 | 8781篇 |
1978年 | 9251篇 |
1977年 | 9062篇 |
1976年 | 8940篇 |
1975年 | 8536篇 |
1974年 | 8337篇 |
1973年 | 8616篇 |
1972年 | 6212篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
X. H. Li Y. Z. Meng S. J. Wang A. Varada Rajulu S. C. Tjong 《Journal of Polymer Science.Polymer Physics》2004,42(4):666-675
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004 相似文献
82.
H. Kaczmarek J. Kowalonek Z. Klusek S. Pierzgalski S. Datta 《Journal of Polymer Science.Polymer Physics》2004,42(4):585-602
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004 相似文献
83.
84.
A. Zubeldia M. Larraaga P. Remiro I. Mondragon 《Journal of Polymer Science.Polymer Physics》2004,42(21):3920-3933
The microstructure and fracture behavior of epoxy mixtures containing two monomers of different molecular weights were studied. The variation of the fracture toughness by the addition of other modifiers was also investigated. Several amounts of high‐molecular‐weight diglycidyl ether of bisphenol A (DGEBA) oligomer were added to a nearly pure DGEBA monomer. The mixtures were cured with an aromatic amine, showing phase separation after curing. The curing behavior of the epoxy mixtures was investigated with thermal measurements. A significant enhancement of the fracture toughness was accompanied by slight increases in both the rigidity and strength of the mixtures that corresponded to the content of the high‐molecular‐weight epoxy resin. Dynamic mechanical and atomic force microscopy measurements indicated that the generated two‐phase morphology was a function of the content of the epoxy resin added. The influence of the addition of an oligomer or a thermoplastic on the morphologies and mechanical properties of both epoxy‐containing mixtures was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3920–3933, 2004 相似文献
85.
E.‐A. McGonigle J. J. Liggat R. A. Pethrick S. D. Jenkins J. H. Daly D. Hayward 《Journal of Polymer Science.Polymer Physics》2004,42(15):2916-2929
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004 相似文献
86.
K. P. O. Mahesh M. Sivakumar Y. Yamamoto Y. Tsujita H. Yoshimizu S. Okamoto 《Journal of Polymer Science.Polymer Physics》2004,42(18):3439-3446
A crystalline δ form of a syndiotactic polystyrene (sPS) membrane was prepared from a solution of sPS (1 wt %) and p‐chlorotoluene (p‐CT) by a solution‐casting method. The mesophase (δ empty form) of sPS was obtained by the extraction of the guest solvent from the δ form of sPS by a stepwise solvent‐extraction method. The sPS/p‐CT mesophase membrane [p‐CT (A‐M)] was used for the sorption of 1 mol % p‐CT for different times and for the sorption of different concentrations of p‐CT, chlorobenzene (CB), p‐xylene (p‐X), toluene, and chloroform for 48 h. The presence of solvents in the sPS membrane was confirmed by IR analysis. A thermal study revealed that the sorption amount of 1 mol % p‐CT increased with increasing immersion time, and the sorption amounts of different solvents increased with increasing solvent concentration. Differential scanning calorimetry results showed that the desorption peak temperature increased as the amount of the solvent increased in the clathrated sPS membrane. Wide‐angle X‐ray diffraction results showed that 2θ at 8.25° was slightly shifted toward 8°, and there was no change in the peak position at 10° for p‐CT (A‐M), which was immersed in different solvents (1 mol %); however, the intensity of 2θ at 10° was not similar for all the samples. Among the solvents used for the sorption studies at 1 mol %, p‐CT (A‐M) could sorb more p‐CT and CB than p‐X, toluene, and chloroform. The solvent sorption isotherm was the Langmuir sorption mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3439–3446, 2004 相似文献
87.
Large melting point depressions for organic nanocrystals, in comparison with those of the bulk, were observed in an associative polymer: telechelic, pyrene‐labeled poly(dimethylsiloxane) (Py‐PDMS‐Py). Nanocrystals formed within nanoaggregates of pyrenyl units that were immiscible in poly(dimethylsiloxane). For 5 and 7 kg/mol Py‐PDMS‐Py, physical gels resulted, with melting points exceeding 40 °C and with small‐angle X‐ray scattering peaks indicating that the crystals were nanoconfined, were 2–3 nm long, and contained roughly 18–30 pyrenyl dye end units. In contrast, 30 kg/mol Py‐PDMS‐PY was not a gel and exhibited no scattering peak at room temperature; however, after 12 h of annealing at ?5 °C, multiple melting peaks were present at 5–30 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3470–3475, 2004 相似文献
88.
The electrochemical reduction of 1-([(4-halophenyl)imino]methyl)-2-naphthols on graphite electrodes was studied using cyclic voltammetry, chronoamperometry, constant-potential coulometry and preparative constant-potential electrolysis techniques. The data revealed that the reduction on graphite was irreversible and followed an EC mechanism. The diffusion coefficients and the number of electrons transferred were determined using the chronoamperometric Cottrell slope and the ultramicro disc Pt-electrode steady-state current. The number of electrons was also determined by bulk electrolysis. The compounds were subjected to constant-potential preparative electrolysis and the electrolysis products were purified and identified by spectroscopic methods. Based on these findings, a mechanism for the electro-reduction process is proposed. 相似文献
89.
V.B. Fainerman V.N. Kazakov S.V. Lylyk A.V. Makievski R. Miller 《Colloids and surfaces. A, Physicochemical and engineering aspects》2004,250(1-3):97-102
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume. 相似文献
90.
W.H. Lim M.J. Lawrence 《Colloids and surfaces. A, Physicochemical and engineering aspects》2004,250(1-3):449-457
Photon correlation spectroscopy and freeze-fracture electron microscopy have been used to determine the ability of a range of micelle-forming, polyoxyethylene (20) sorbitan monoesters (Tweens) to solubilise vesicles prepared from phosphatidylcholines of different acyl chain lengths and degrees of saturation with a view to rationalising (in terms of their membrane toxicity) which of the micelle-forming surfactants to use as drug delivery vehicles. The phosphatidylcholines used were dimyristoyl-, dipalmitoyl-, distearoyl- and dioleoylphosphatidylcholine (DMPC, DPPC, DSPC and DOPC, respectively) while the nonionic polyoxyethylene sorbitan monoesters studied were polyoxyethylene (20) sorbitan monolaurate (Tween 20), a 9:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 40), a 1:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 60), and polyoxyethylene (20) sorbitan monooleate (Tween 80). The ability of the Tween micelles to solubilise phospholipid vesicles was found to depend both upon the length of the surfactant acyl chain and the length of the acyl chains of the phospholipid comprising the vesicle. Vesicles composed of long saturated diacyl chain phospholipids, namely DSPC and DPPC, were the most resistant to solubilisation, while those prepared from the shorter acyl chained DMPC were more readily solubilised. In terms of their solubilisation behaviour, vesicles made from phospholipids containing long, unsaturated acyl chains, namely DOPC behaved more akin to those vesicles prepared from DMPC. None of the Tween surfactants were effective at solubilising vesicles prepared from DPPC or DSPC. In contrast, there were clear differences in the ability of the various surfactants to solubilise vesicles prepared from DMPC and DOPC, in that micelles formed from Tween 20 were the most effective solubilising agent while those formed by Tween 60 were the least effective. As a consequence of these observations it was considered that Tween 60 was the surfactant least likely to cause membrane damage in vivo and, therefore, is the most suitable surfactant for use as a micellar drug delivery vehicle. 相似文献