首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754584篇
  免费   7061篇
  国内免费   2213篇
化学   392326篇
晶体学   10724篇
力学   35914篇
综合类   23篇
数学   98269篇
物理学   226602篇
  2021年   6295篇
  2020年   6921篇
  2019年   7649篇
  2018年   9856篇
  2017年   9898篇
  2016年   14437篇
  2015年   8614篇
  2014年   13705篇
  2013年   33775篇
  2012年   25879篇
  2011年   31299篇
  2010年   22347篇
  2009年   22187篇
  2008年   29256篇
  2007年   29249篇
  2006年   27146篇
  2005年   24287篇
  2004年   22412篇
  2003年   20057篇
  2002年   19895篇
  2001年   21328篇
  2000年   16488篇
  1999年   12948篇
  1998年   10978篇
  1997年   10730篇
  1996年   10330篇
  1995年   9338篇
  1994年   9141篇
  1993年   8827篇
  1992年   9549篇
  1991年   9923篇
  1990年   9436篇
  1989年   9238篇
  1988年   9271篇
  1987年   8883篇
  1986年   8498篇
  1985年   11261篇
  1984年   11664篇
  1983年   9752篇
  1982年   10369篇
  1981年   9931篇
  1980年   9464篇
  1979年   10053篇
  1978年   10312篇
  1977年   10216篇
  1976年   10133篇
  1975年   9705篇
  1974年   9466篇
  1973年   9882篇
  1972年   6739篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Copolymers of monomers 2,4‐dichlorophenyl methacrylate (2,4‐DMA) and methyl methacrylate (MMA) were synthesized with different monomer feed ratios using toluene as a solvent and 2,2′‐azobisisobutyronitrile (AIBN) as an initiator at 70 °C. The copolymers were characterized by IR‐spectroscopy, and copolymer composition was determined with UV‐spectroscopy. The linearization method of Fineman–Ross was employed to obtain the monomer reactivity ratios. The molecular weights and polydispersity indexes were determined by gel permeation chromatography (GPC). Thermogravimetric analyses of polymers were carried out in nitrogen atmosphere. The homo‐ and copolymers were tested for their antimicrobial properties against selected microorganisms. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5227–5234, 2004  相似文献   
93.
7‐Octenyldimethylphenylsilane was copolymerized with ethylene via Et(Ind)2ZrCl2 methylaluminoxane catalyst system without loss of catalyst activity or decrease in molar mass. The comonomer contents in the polymer samples were at a level of 0.15–1.0 mol % and the reactive phenylsilane groups were posttreated to different alcoxy‐ and halosilane groups, for example, Si? F, Si? Cl, Si? OCH3, and Si? OCH2CH3. The posttreatment reactions had no major effect on the molar masses or on the thermal properties (measured with differential scanning calorimetry) of the copolymers. The reaction pathways were nearly independent of the comonomer contents and the reactions reached 70–100% conversions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1461–1467, 2004  相似文献   
94.
3,3′,5,5′‐Tetrakis(2‐chloro‐2‐propyl)biphenyl (biphenyl tetracumyl chloride, BPTCC) and 1,3‐bis[3,5‐bis(2‐chloro‐2‐propyl)phenoxy]propane (diphenoxypropane tetracumyl chloride, DPPTCC) were synthesized as initiators for quasiliving cationic polymerization of isobutylene (IB). In the synthesis of BPTCC, tetrafunctionality was achieved via the coupling of dimethyl 5‐bromoisophthalate (DMBI) using nickel dibromide bis(triphenylphosphine) and zinc in the presence of a base; in the synthesis of DPPTCC, two equivalents of dimethyl 5‐hydroxyisophthalate were linked via reaction with 1,3‐dibromopropane in the presence of potassium carbonate. Both initiators were used to initiate the polymerization of IB under quasiliving cationic polymerization conditions. PIB initiated from BPTCC revealed a chain end/molecule value (as determined by 1H‐NMR) of 3.85, verifying the nearly exclusive production of 4‐arm polyisobutylene (PIB). GPC analysis revealed a narrow peak representing the target four‐arm PIB, with a slight shoulder at high elution volumes (low molecular weights). GPC analysis of the PIB initiated by DPPTCC revealed multimodal distributions, suggesting the formation of two‐, three‐, and four‐arm star polymers during the polymerization. This behavior was attributed to Friedel–Crafts alkylation of the initiator core after the addition of one IB unit, which was activated by the electron‐donating oxytrimethyleneoxy linking moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5942–5953, 2004  相似文献   
95.
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004  相似文献   
96.
97.
Micelles prepared from amphiphilic block copolymers in which a poly(styrene) segment is connected to a poly(ethylene oxide) block via a bis‐(2,2′:6′,2″‐terpyridine‐ruthenium) complex have been intensely studied. In most cases, the micelle populations were found to be strongly heterogeneous in size because of massive micelle/micelle aggregation. In the study reported in this article we tried to improve the homogeneity of the micelle population. The variant preparation procedure developed, which is described here, was used to prepare two “protomer”‐type micelles: PS20‐[Ru]‐PEO70 and PS20‐[Ru]‐PEO375. The dropwise addition of water to a solution of the compounds in dimethylformamide was replaced by the controlled addition of water by a syringe pump. The resulting micelles were characterized by sedimentation velocity and sedimentation equilibrium analyses in an analytical ultracentrifuge and by transmission electron microscopy of negatively stained samples. Sedimentation analysis showed virtually unimodal size distributions, in contrast to the findings on micelles prepared previously. PS20‐[Ru]‐PEO70 micelles were found to have an average molar mass of 318,000 g/mol (corresponding to 53 protomers per micelle, which is distinctly less than after micelle preparation by the standard method) and an average hydrodynamic diameter (dh) of 18 nm. For PS20‐[Ru]‐PEO375 micelles, the corresponding values were M = 603,000 g/mol (31 protomers per micelle) and dh = 34 nm. The latter particles were found to be identical to the “equilibrium” micelles prepared in pure water. Both micelle types had a very narrow molar mass distribution but a much broader distribution of s values and thus of hydrodynamic diameters. This indicates a conformational heterogeneity that is stable on the time scale of sedimentation velocity analysis. The findings from electron microscopy were in disagreement with those from the sedimentation analysis both in average micelle diameter and in the width of the distributions, apparently because of imperfections in the staining procedure. The preparation procedure described also may be useful in micelle formation from other types of protomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4458–4465, 2004  相似文献   
98.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   
99.
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004  相似文献   
100.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号