首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   37篇
  国内免费   10篇
化学   7篇
数学   3篇
物理学   63篇
  2023年   6篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   12篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  1999年   2篇
  1997年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有73条查询结果,搜索用时 375 毫秒
41.
粗糙微通道内气体流动的分子动力学研究   总被引:1,自引:1,他引:0  
为研究粗糙度对微通道内气体流动及其边界滑移性质的影响,采用分子动力学模拟方法研究了氩气在0.1 μm铂通道内的流动,通道表面粗糙度由三角粗糙元阵列构成。气体流动的边界条件决定于2个准则数: A/λ和Kn=λ/L(其中A为壁面粗糙度、λ为气体分子的平均自由程、L为流动系统的尺度)。Maxwell基于Kn的滑移模型当A/λ<0.25时适用;A/λ<1时,气体流动存在边界速度滑移,体现出稀薄效应,A/λ≈1时为无滑移,A/λ>1时为等效负滑移.  相似文献   
42.
With the advent of ultrashort high intensity laser pulses,laser absorption during the laser–solid interactions has received significant attention over the last two decades since it is related to a variety of applications of high intensity lasers,including the hot electron production for fast ignition of fusion targets,table-top bright X-ray and gamma-ray sources,ion acceleration,compact neutron sources,and generally the creation of high energy density matters.Normally,some absorption mechanisms found for nanosecond long laser pulses also appear for ultrashort laser pulses.The peculiar aspects with ultrashort laser pulses are that their absorption depends significantly on the preplasma condition and the initial target structures.Meanwhile,relativistic nonlinearity and ponderomotive force associated with the laser pulses lead to new mechanisms or phenomena,which are usually not found with nanosecond long pulses.In this paper,we present an overview of the recent progress on the major absorption mechanisms in intense laser–solid interactions,where emphasis is paid to our related theory and simulation studies.  相似文献   
43.
第一讲台面型电子加速器——激光尾波场加速器   总被引:1,自引:0,他引:1  
陈民  盛政明  马燕云  张杰 《物理》2006,35(12):1016-1027
近年来,随着超短超强激光脉冲技术的发展,利用超短超强激光在等离子体中激发出的高强度尾波场来实现电子加速的方案也取得了巨大进展.相对于传统的射频腔加速器,这种新型的加速器由于以等离子体为介质,可以突破传统加速器中加速梯度小于100MV/m的限制,其加速梯度可以达到100GV/m.电子在这样的加速场下,在厘米量级的距离内就可以获得GeV的能量.随着台面型超短超强激光器的发展,新一代实用化的台面型电子加速器有望在不远的将来得以实现.文章将从理论和实验上对激光尾波场加速中的尾波激发、电子注入、距离延长三个方面加以介绍,同时给出国内在这些方面的一些研究进展.  相似文献   
44.
从映射的观点来看,函数是由定义域、值域以及定义域到值域上的对应法则三要素组成的一类特殊的映射,当定义域及对应法则确定后,值域也就随之而定,所以定义域及对应法则是函数的两个基本要素。但学生往往注重对应法则的探求和研究,忽视定义域的地位和作用。就某种意义来说,正确地确定一  相似文献   
45.
采用分子动力学模拟的方法研究了过冷水的结构和形核过程随电场强度变化的情况。对系统微观结构的分析显示在电场强度为0~10~(10)V/m范围内,处于200K的过冷水在5 ns时间内不足以发生形核,只有当电场强度增加到10~(11) V/m或者温度降低到100K时系统才能在5 ns内发生形核。模拟结果表明电场强度的改变对系统中水分子团簇的微观结构有明显影响,电场强度的增加能促进系统的短程有序性。  相似文献   
46.
蔡怀鹏  高健  李博原  刘峰  陈黎明  远晓辉  陈民  盛政明  张杰 《物理学报》2018,67(21):214205-214205
超短超强激光与固体靶表面等离子体相互作用可以通过高次谐波的方式产生从极紫外到软X射线波段的相干辐射,获得飞秒甚至阿秒量级的超短脉冲,可用于观测原子或分子中的电子运动等超快动力学过程.本文实验研究了相对论圆偏振飞秒激光与固体靶相互作用的高次谐波产生过程,实验结果表明,在较大入射角下,圆偏振激光也可以有效地产生高次谐波辐射.通过预脉冲控制靶表面的预等离子体密度标长,发现高次谐波的产生效率随密度标长的增加而单调下降.进一步通过二维粒子模拟程序,分析了激光的偏振以及预等离子体密度标长对高次谐波产生的影响,很好地解释了实验观测结果.  相似文献   
47.
本文通过实验研究了低电压下纯水/盐溶液过冷液滴的冻结现象,测量了在1 V电压下液滴在金表面的冻结温度。实验结果表明外加低电压对纯水液滴冻结的影响较小,而对0.1 mol·L-1的KCl溶液液滴的冻结影响较明显。当金表面电势高时,盐溶液滴平均冻结温度上升,反之平均冻结温度下降。基于双电层假设,认为在低电压下纯水中双电层内电场强度低,对形核率的影响相对较小。盐溶液中的离子与电极表面形成的双电层内电场强度比纯水更高,对形核有更明显的影响;当外加电压削弱了双电层内的电场强度时,形核率下降,反之形核率上升。  相似文献   
48.
汽液界面动力学行为与热力学性质的分子动力学研究   总被引:5,自引:2,他引:3  
本文采用分子动力学方法研究了热平衡条件下的汽液界面的动力学行为和热力学性质。统计获得了界面区的密度、压力张量及温度的分布,并且从分子层次观察分析了界面结构和动力学特性。研究表明汽液界面是一个随时间起伏涨落的曲面,界面层的分子并不是处于液相和蒸汽相之间的一种过渡状态,从汽相到液相密度的连续变化是长时间的统计结果,汽渡过渡区的厚度与汽液界面区的密度涨落的范围是一致的。对于平衡条件下的汽液界面,由于汽液相变的影响,在紧贴界面处存在一个分子平均动能非平衡分布的区域。此非平衡区域的存在与汽液两相的宏观热平衡并不矛盾,但可能对蒸发/凝结流率的估计有不可忽略的影响。  相似文献   
49.
金属凝固与晶体生长过程的蒙特卡罗模拟   总被引:6,自引:0,他引:6  
采用导热的有限差分计算与图形蒙特卡罗方法相结合的手段,模拟了不同的冷却条件,熔体初温以及杂质含量情况下的金属凝固及其晶体生长过程。模拟得了与典型的边界冷却凝固实验相一致的微观组织结构,同时,通过对模拟结果的分析,总结了不同的冷却条件、熔体初温以及含杂质情况对金属凝固组织的一些影响规律。  相似文献   
50.
介绍针对超短超强激光脉冲与等离子体相互作用研究的多维粒子模拟程序KLAP.在其一维程序KLAP1D中,考虑场电离、碰撞离化及两体碰撞效应后,程序可以用于研究短脉冲激光与中性物质的相互作用.在其三维程序KLAP3D中,为了研究加速能量达GeV的长距离激光尾波场加速问题,程序采用移动窗口技术,使得模拟尺度可以达到厘米量级.同时介绍了利用KLAP程序得到的有关THz辐射、激光与中性气体相互作用中的脉冲及离化波前演化、激光固体靶作用中表面电子加速及激光尾波场加速的研究实例.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号