首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   117篇
  国内免费   118篇
化学   201篇
晶体学   6篇
力学   58篇
综合类   8篇
数学   91篇
物理学   314篇
  2024年   2篇
  2023年   9篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   10篇
  2018年   10篇
  2017年   17篇
  2016年   12篇
  2015年   19篇
  2014年   33篇
  2013年   34篇
  2012年   34篇
  2011年   29篇
  2010年   37篇
  2009年   33篇
  2008年   32篇
  2007年   19篇
  2006年   44篇
  2005年   30篇
  2004年   34篇
  2003年   24篇
  2002年   19篇
  2001年   21篇
  2000年   22篇
  1999年   15篇
  1998年   15篇
  1997年   11篇
  1996年   8篇
  1995年   13篇
  1994年   14篇
  1993年   6篇
  1992年   5篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
排序方式: 共有678条查询结果,搜索用时 31 毫秒
91.
二维跨声速有旋流动反命题的赝势函数变分原理   总被引:3,自引:0,他引:3  
本文以文献[3]所得正命题变分原理为基础,通过对边界项进行变域变分的详细分析,构造出了未知壁面的自然边界条件,推导出了求解反命题的变域变分原理,这些工作为采用有限元求解气动反命题奠定了完密的数学基础。  相似文献   
92.
回顾了近年来在高聚物黏结炸药(PBX)原子和分子尺度数值模拟方面取得的进展,主要研究领域包括以下6个方面:炸药分子力场、热力学参数计算、耗散/输运性能、相图/相变动力学、动力学响应行为和热点形成机制。针对当前研究现状,介绍了各领域的代表性工作和主要研究成果。目前对PBX炸药的结构和静力学性能已有较充分的认识,但对炸药的动力学响应行为和细观起爆机制尚缺少系统的科学认识,存在一系列挑战性问题,如结构缺陷在爆轰反应后期的形态和表征,以及初始缺陷对爆轰波波形畸变的影响机制。需要将理论计算与实验相结合,以解决爆轰物理领域中的难点问题。  相似文献   
93.
王海潮  陈军  陆克定 《化学进展》2015,27(7):963-976
大气硝基(NO3)自由基和五氧化二氮(N2O5)是对流层大气化学反应的核心物种,对于理解大气氧化性、二次有机气溶胶生成、活性卤素化学和全球硫素循环等对流层大气化学研究的关键问题具有重要意义。大气NO3自由基和N2O反应活性高、大气寿命短、浓度低,其定量分析非常具有挑战性。本文总结了大气NO3自由基与N2O5的实地测量方法,并对差分光学吸收光谱(DOAS)、腔衰荡光谱(CRDS)、腔增强光谱(CEAS)、激光诱导荧光光谱(LIF)、电子顺磁共振谱(MIESR)和化学离子化质谱(CIMS)等六类技术方法的准确度、精确度、时间分辨率、测量干扰、标定方法和系统稳定性等方面进行了系统比较。综合分析认为吸收光谱法是对流层NO3自由基与N2O5测量技术的发展方向,其中近期发展起来的腔技术(CRDS和CEAS)显示出较好的应用潜力。但是我国实际大气环境中普遍存在高浓度的颗粒物污染,如何在高颗粒物条件下实现NO3自由基与N2O5的精密准确测量具有挑战性。本文进一步归纳了NO3自由基与N2O5在城市、森林、自由大气和海洋海岸等典型大气环境条件下的浓度水平和主要科学发现,探讨了一些亟待解决的问题和可能的重点研究方向。  相似文献   
94.
陈军  丁能文  李之峰  张骞  钟盛文 《化学进展》2015,27(9):1291-1301
随着储能电源和电动汽车的迅猛发展,开发高能量密度的锂离子电池成为研究的重点之一。锂离子电池性能的提高很大程度上取决于正极材料的特性。目前,广泛使用的无机正极材料普遍存在容量提升有限、生产过程消耗能源大、存在安全隐患和成本高等缺陷。因此,需要开发比容量更高、安全性更好和在自然界中储量更为丰富的绿色能源材料。与无机正极材料相比,有机物正极材料具有理论比容量高、原料丰富、环境友好、结构可设计性强和体系安全的优点,是一类具有广泛应用前景的储能物质。本文综述了目前国内外已经开展的研究工作,介绍了作为锂离子正极材料的几类主要的有机化合物,包括导电高分子聚合物、含硫化合物、氮氧自由基化合物和含氧共轭化合物等;对比分析了这些化合物的电化学性能、电化学反应机理及其具备的优势和存在的不足;指出了有机化合物作为锂离子正极材料需要解决的问题及今后研究和改进方向。  相似文献   
95.
BBO晶体四倍频全固态小功率紫外激光器   总被引:3,自引:1,他引:2       下载免费PDF全文
 利用KTP晶体和BBO晶体,进行了激光二极管泵浦的Nd:YVO4声光调Q激光脉冲四倍频实验。在不同绿光功率入射时,获得光束的束腰半径和紫外转换效率的依赖关系:当绿光功率为1.10 W,束腰半径为12.4 μm时,得到了210 mW的准连续266 nm紫外脉冲输出,四倍频转换效率为19.1%。实验还对紫外远场光斑分别在o光振动面和e光振动面内进行分析,指出了BBO晶体在该两平面内不同的倍频接受角是造成椭圆形紫外光斑和主光斑附近明暗条纹的主要原因。  相似文献   
96.
基于微分法精确测量气溶胶飞行时间的新方法   总被引:4,自引:1,他引:3  
利用飞行时间气溶胶粒子束光谱技术对大气气溶胶牲子粒谱分布进行监测是精确测量大气气溶胶粒子粒径大小及浓度的典型方法.而精确测量气溶胶粒子飞行时间是实现粒径谱精确监测的关键.利用微分法对门限电平比较法进行优化改进,利用信号微分后的零点对应信号最大值的特点,将飞行时间提取中变化的门限电平的比较转换成零电平的比较,设计了一种精确测量气溶胶粒子飞行时间的方法.该方法不但可以忽略因气溶胶粒子大小而引起的散射光强弱变化,而且,即使散射光双峰信号并非理想的对称信号,该方法也能精确地测得飞行时间.  相似文献   
97.
A simple method is presented to eliminate gray-tracking effects of KTP crystals using a strong focusing scheme. Experimental and theoretical studies on the gray-tracking effects are carried out. A 18 W green laser is demon-strated with a 9 kHz repetition rate, a beam quality factor of M^2 = 1.6 and a conversion efficiency of 44%.  相似文献   
98.
打造自己的回归计算器   总被引:2,自引:1,他引:1  
陈军  贺与平 《光谱实验室》2005,22(5):981-982
通过调用Excel内部函数,轻松构造出自己的回归计算器,快速获得回归方程。方法直观方便,可以极大的提高工作效率。  相似文献   
99.
在不锈钢电极(SS)表面制得超细纤维状聚苯胺(superfine-fibrous PANI),经Pt微粒修饰后得到Pt微粒超细纤维聚苯胺复合电极[Pt/(superfine-fibrous PANI)/SS]。结果表明,直径50-100nm的Pt微粒均匀分布于直径约100nm的聚苯胺纤维上;Pt/(superfine-fibrous PANI)/SS电极对H2O2氧化具有很好的电催化活性。采用脉冲电流法(PGM)再将葡萄糖氧化酶(GOD)与间苯二胺(MPD)混合共聚嵌于Pt/(superilnefibrous PANI)/SS电极表面,获得了具有优异生物电化学传感特性的葡萄糖氧化酶电极。该酶电极最大响应电流密度im=917.4μA/cm^2,米氏常数K=9.339mmol/L;酶电极对葡萄糖响应快,对尿酸和抗坏血酸有很好的抗干扰性能。  相似文献   
100.
对晶体光损伤阈值测量的一种新方法的研究   总被引:2,自引:1,他引:1  
盛芳  陈军  夏宗仁  洪治 《光学学报》2004,24(4):03-506
提出一种测量晶体光损伤阈值的新方法,即确定激光横向功率密度的空间分布,利用晶体的激光损伤斑点半径,直接计算出晶体光损伤阈值,并给出入射激光为高斯光束时晶体损伤阈值与其损斑半径的关系。以提拉法生长的掺镁铌酸锂(MgO:LiNbO3)晶体为研究对象,用该方法测量其损伤阈值,得到了定量结果且所得数据与文献已报道的规律相符。分析得出同样激光条件下.损斑半径越大的晶体其光损伤阈值越小的结论,指出该方法同样适用于其他晶体或非高斯光束条件下光损伤阈值的测量并对具体作法进行了讨论。该测量方法弥补了常用测量方法只能定性或半定量的不足,可用于晶体抗光损伤阈值的精确测量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号