首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   14篇
晶体学   1篇
物理学   20篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
Frank's theory describes that a screw dislocation will produce a pit on the surface,and has been evidenced in many material systems including GaN.However,the size of the pit calculated from the theory deviates significantly from experimental result.Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN,we believe that Frank's model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same.If the kinetic process is too vigorous or too slow to reach a balance,the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state.When the curvature at the center of the dislocation core reaches the critical value 1/r_0,at the edge of the spiral,the accelerating rate of the curvature may not fall to zero,so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit.  相似文献   
12.
研究不同界面处理对AlGaN/GaN金属-绝缘层-半导体(MIS)结构的高电子迁移率晶体管(HEMT)器件性能的影响。采用N_2和NH_3等离子体对器件界面预处理,实验结果表明,N_2等离子体预处理能够减小器件的电流崩塌,通过对N_2等离子体预处理的时间优化,发现预处理时间10 min能够较好地提高器件的动态特性,30 min时动态性能下降。进一步引入AlN作为栅介质插入层并经过高温热退火后能够有效提高器件的动态性能,将器件的阈值回滞从411 mV减小至111 mV,动态测试表明,在900 V关态应力下,器件的电流崩塌因子从42.04减小至4.76。  相似文献   
13.
利用金属有机化合物气相沉积(MOCVD)在蓝宝石衬底上生长了高阻GaN薄膜。对GaN成核层生长的反应室压力、生长时间和载气类型对GaN缓冲层电学特性的影响进行了分析。实验结果表明,延长GaN成核层的生长时间,降低成核层生长时的反应室压力,载气由H2换为N2都会得到高阻的GaN缓冲层。样品的方块电阻Rs最高为2.49×1011 Ω/□。以高阻GaN样品为衬底制备了AlGaN/AlN/GaN结构HEMT器件,迁移率最高达1 230 cm2/(V·s)。  相似文献   
14.
利用金属有机化学气相沉积(MOCVD)设备,在蓝宝石(0001)面上外延不同生长时间AlN隔离层的AlxGa1-xN/AlN/GaN结构的高电子迁移率的晶体管(HEMT),研究了AlN隔离层厚度对HEMT材料电学性能的影响。研究发现采用脉冲法外延(PALE)技术生长AlN隔离层的时间为12 s(1 nm左右)时,HEMT材料的方块电阻最小,电子迁移率为1 500 cm2·V-1·s-1,二维电子气(2DEG)浓度为1.16×1013 cm-2。AFM测试结果表明,一定厚度范围内的AlN隔离层并不会对材料的表面形貌产生重大的影响。HRXRD测试结果表明,AlGaN/AlN/GaN具有好的异质结界面。  相似文献   
15.
采用金属有机化合物化学气相沉积(MOCVD)方法制备了不同AlN缓冲层厚度的GaN样品,研究了AlN缓冲层厚度对GaN外延层的应力、表面形貌和晶体质量的影响。研究结果表明:厚度为15 nm的AlN缓冲层不仅可以有效抑制Si扩散,而且还给GaN外延层提供了一个较大的压应力,避免GaN薄膜出现裂纹。在该厚度AlN缓冲层上制备的GaN薄膜表面光亮、无裂纹,受到的张应力为0.3 GPa,(0002)和(1012)面的高分辨X射线衍射摇摆曲线峰值半高宽分别为536 arcsec和594 arcsec,原子力显微镜测试得到表面粗糙度为0.2 nm。  相似文献   
16.
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长了InGaN/GaN量子阱结构. 研究了引入n型InGaN薄层或InGaN/GaN超晶格层的量子阱特性,结果表明通过引入n型InGaN薄层或InGaN/GaN超晶格层缓解了量子阱有源区中的应力,改善了多量子阱表面形貌,减少了V型缺陷密度,而且提高了多量子阱的光致发光强度,从而也改进了LED的发光效率. 关键词: InGaN/GaN多量子阱 原子力显微镜 X射线双晶衍射 光致发光  相似文献   
17.
邢艳辉  韩军  邓军  李建军  沈光地 《物理学报》2009,58(4):2644-2648
采用金属有机物化学淀积技术在不同倾角(0°—03°)的蓝宝石衬底上外延n型GaN.通过原子力显微镜观察到n型GaN均呈台阶流生长模式,02°和03°倾角衬底的n型GaN表面台阶朝向相同、分布均匀,明显地看到在0°倾角衬底的n型GaN表面由台阶重构直接导致的台阶朝向随机分布、疏密不匀的形貌.电子背散射分析表明,在0°倾角衬底的n型GaN外延层的应力随外延厚度增加而增加,而02°和03°倾角衬底的n型GaN外延层的应力没有明显的变化.电学和光学特性研究表明,02°和03°倾角衬底的n型GaN有较高的电子浓度和较低的黄光带与近带边强度之比. 关键词: 金属有机物化学淀积 氮化物 原子力显微镜 光致发光  相似文献   
18.
采用Delta掺杂技术制备了p型氮化镓薄膜,并利用原子力显微镜、霍尔测试、X射线衍射、荧光光谱等测试手段对样品的形貌和电导性能进行了分析,发现Delta掺杂样品比均匀掺杂样品晶体质量和电导性能都有很大提高,说明Delta掺杂可有效抑制缺陷,并对缺陷抑制机理进行了讨论;最后,对掺杂前的预通氨过程作了深入的研究,结果发现,预通氨对掺杂不益. 关键词: 氮化镓 LEDs MOCVD Delta掺杂  相似文献   
19.
在Si(111)衬底上用金属有机化学气相沉积(MOCVD)设备生长了AlN和GaN薄膜。采用高分辨X射线衍射、椭圆偏振光谱仪和原子力显微镜研究了AlN缓冲层生长时的载气(H2)流量变化对GaN外延层的影响。椭圆偏振仪测试表明:相同生长时间内AlN的厚度随着H2流量的增加而增加,即H2流量增加会导致AlN生长速率的提高。原子力显微镜测试表明:随着H2流量的增加,AlN表面粗糙度也呈上升趋势。XRD测试表明:随着AlN生长时的H2流量的增加,GaN的(0002)和(1012)峰值半宽增大,即螺型穿透位错密度和刃型穿透位错密度增加。可能是由于AlN缓冲层的表面形貌较差,导致GaN的晶体质量有所下降。实验结果表明:采用较低的H2流量生长AlN缓冲层可以控制AlN的生长速率,在一定程度上有助于提高GaN的晶体质量。  相似文献   
20.
邢艳辉  韩军  刘建平  邓军  牛南辉  沈光地 《物理学报》2007,56(12):7295-7299
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长InGaN/GaN多量子阱结构.对多量子阱垒层掺In和非掺In进行了比较研究,结果表明,垒掺In 的样品界面质量变差,但明显增加了光致发光谱的峰值强度和积分强度,带边峰与黄光峰强度之比增大,降低了表面粗糙度.利用这两种结构制备了相应的发光二极管(LED)样品.通过电荧光测量可知,垒掺In的LED比非掺In的LED有较高的发光强度和相对均匀的波长,这主要是由于垒掺In后降低了阱与垒之间晶格失配的应力,从而降低了极化电场,提高了辐射复合效率. 关键词: InGaN/GaN多量子阱 X射线双晶衍射 原子力显微镜 光致发光  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号