首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   67篇
  国内免费   2篇
化学   1篇
力学   15篇
物理学   83篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   8篇
  2008年   10篇
  2007年   14篇
  2006年   8篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有99条查询结果,搜索用时 265 毫秒
61.
 采用圆柱体胞模型分析方法,对球形微孔洞在不同加载应变率条件下的动力学响应行为进行了有限元分析,计算结果表明:在微孔洞稳定增长阶段,惯性对微孔洞的快速增长起着关键性作用,其它因素的影响基本可以忽略,微孔洞半径增长率与平均应力的平方根成正比。提出了一个微孔洞增长惯性机制的损伤度演化方程,结合逾渗软化函数描述微孔洞聚集行为,从而构建了一个新的动态拉伸断裂模型,并通过自定义材料模型子程序,把断裂模型嵌入LS-DYNA程序中,对无氧铜平板撞击层裂实验进行了数值模拟研究,计算结果与实验结果的比较令人满意,初步检验了新模型的实用性。  相似文献   
62.
 冲击波压缩下材料宏观性质的变化与微观结构演化有着密切联系。通过改进对称差分电路测量方法,测量K9玻璃在失效破坏过程中的电阻率变化,研究了脆性介质在低冲击波应力下的损伤破坏机制。结果表明,随着冲击波在K9玻璃中传播,K9玻璃的电阻率逐渐下降;在7.6 GPa冲击压缩下,K9玻璃由最初的绝缘体状态逐渐转变为电阻率约420 Ω·m的稳定状态。  相似文献   
63.
不同于延性介质,脆性介质的失效破坏严重制约着材料的强度.本文采用一种定量描述脆性介质力学性质的格点-弹簧模型,研究了金刚石-碳化硅超硬复合材料的冲击强度及其细观损伤机理,有助于避免灾变破坏、提高冲击强度.在模型中,通过构建不同体积分数比的金刚石和碳化硅两相复合材料,模拟获得了经受冲击波压缩形变后的宏观波剖面,显示出随着金刚石颗粒含量增加,冲击强度逐渐增大,而后减小;对应于这种变化,损伤演化分析揭示出存在三种细观损伤模式,当金刚石颗粒含量在10%—50%范围内增加时,长距离扩展滑移带占主导;当金刚石颗粒含量为70%时,滑移带已由长距离扩展演化为短细滑移带,损伤主要来自于碳化硅基体,多数金刚石颗粒未发生损伤;当金刚石颗粒含量超过70%的临界值后,短细滑移带也将被强烈限制,应力集中致使金刚石颗粒被严重损伤,冲击强度下降.研究结果为优化设计金刚石-碳化硅超硬复合材料以及制备新型抗冲击材料提供了物理认知.  相似文献   
64.
对第七届Zababakhin科学论坛国际会议作了简要的介绍,主要包括会议概况、大会报告及分组报告情况及参会的几点体会。  相似文献   
65.
45号钢的动态力学性能研究   总被引:25,自引:3,他引:25  
对45号钢在不同环境温度(25 300℃)和不同应变率(10-4~103s-1)的 关系进行了研究。修正了Johnson Cook模型中的应变率强化系数C,确定了45号钢的本构关系。金相观察表明,与应变率强化相比,较高的环境温度使硬化速率降低,且占主要因素,其结果使材料的强度降低。透射电镜分析表明,高应变率在使位错运动的能量提高的同时,增加了位错在晶界处的阻力,而较高的环境温度则为位错提供了较多的滑移面和滑移方向,其结果是使材料更容易压缩。  相似文献   
66.
冲击载荷下岩石的损伤特性分析   总被引:8,自引:0,他引:8  
贺红亮 《爆炸与冲击》1995,15(3):241-246
把岩石类脆性材料受冲击波加载造成的损伤与弹性纵波速度的变化联系起来,定义了损伤度D,并且以辉长岩(Gabbro)和石灰岩(Lirnestone)为例,测量了冲击波加载后靶体的损伤度分布。同时对冲击加载后含损伤的辉长岩,测量了一维准静压下弹性纵波速度的变化和抗压强度,分析了含损伤材料的静力学行为。  相似文献   
67.
在平面一维弹塑性流动有限差分计算程序中加入4种延性金属层裂模型,对平板撞击层裂实验进行数值模拟。结果表明:简单最大拉伸应力模型和简单损伤累积模型能定性反映层裂的物理现象,由于忽略损伤对本构的影响,计算结果和实验有偏差,但模型要求参数较少,对于一些精度要求不是很高的工程问题,可以采用;从材料损伤断裂物理本质出发,采用微损伤统计方法得到的NAG模型和封加波损伤度函数模型,能很好地再现实测的自由面速度剖面,数值计算结果与实验吻合很好。  相似文献   
68.
作为爆电电源的多孔PZT95/5铁电陶瓷具有极为重要的工程应用背景,但它在强电场作用下易发生电击穿失效,从而影响其放电效率,甚至造成电源失效。基于多孔PZT95/5铁电陶瓷材料在外电场作用下内部形成导电通道以致电失效的机制,通过通道内部局部放电及通道电-机械击穿机理,建立了导电通道诱导的多孔铁电陶瓷的电击穿模型并进行了相关的理论分析。基于本模型,给出了不同孔隙率下铁电陶瓷的电击穿临界电场强度,预测结果与实验测试结果吻合良好,且材料孔隙率越大,内部电击穿通道的特征尺寸越大,导致铁电陶瓷材料的电击穿临界场强显著降低。  相似文献   
69.
采用激光速度干涉技术,连续测量了AD95氧化铝陶瓷在一维应变冲击压缩下的自由面速度剖面,通过对速度剖面特征的分析,讨论了AD95陶瓷等脆性材料在冲击压缩下是否存在破坏波现象及其与材料特性的关系。研究结果表明:冲击加载应力在4.4~7.3GPa范围,即从小于到略大于雨贡纽弹性极限(约5.5GPa),在AD95陶瓷的自由面速度剖面中都未出现表征破坏波现象的二次加载信号,表明未发生破坏波形式的严重压缩损伤;但是,自由面速度剖面中特征点的规律性时序关系和前沿弥散特征都表明,在所讨论的加载应力范围内,AD95陶瓷材料发生了一定程度的压缩损伤;断裂韧性是影响材料在冲击压缩下是否发生破坏波现象的重要因素,断裂韧性较低,冲击波加载下易于形成大量微裂纹扩展和贯通,使材料发生"粉碎性"的严重破坏,是产生破坏波现象的重要条件之一。  相似文献   
70.
Plate-impact experiments have been carried out to examine the effect of grain size and grain arrangement on the damage evolution of ultrapure aluminum. Two groups of samples, "cross-cut" and "longitudinal-cut," are obtained from the rolled aluminum rod along different directions. The peak compressive stress is approximately 1.25 GPa-1.61 GPa, which can cause incipient spall damage that is correlated to the material microstructure. The metallographic analyses of all recovered samples show that nearly all damage nucleates at the grain boundaries, especially those with larger curvature. Moreover, under lower shock stress, the spall strength of the "longitudinal-cut" sample is smaller than that of the "crosscut" sample, because the different grain sizes and arrangement of the two samples cause different nucleation, growth, and coalescence processes. In this study, the difference in the damage distribution between "longitudinal-cut" and "cross-cut" samples and the causes for this difference under lower shock-loading conditions are also analyzed by both qualitative and semi-quantitative methods. It is very important for these conclusions to establish a reasonable and perfect equation of damage evolution for ductile metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号