首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   125篇
  国内免费   20篇
化学   42篇
晶体学   56篇
力学   4篇
数学   13篇
物理学   135篇
  2023年   3篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   9篇
  2018年   13篇
  2017年   9篇
  2016年   8篇
  2015年   11篇
  2014年   21篇
  2013年   15篇
  2012年   15篇
  2011年   11篇
  2010年   16篇
  2009年   21篇
  2008年   21篇
  2007年   12篇
  2006年   16篇
  2005年   15篇
  2004年   17篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
排序方式: 共有250条查询结果,搜索用时 17 毫秒
141.
高压PECVD技术沉积硅基薄膜过程中硅烷状态的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用高压射频等离子体增强化学气相沉积(RF-PECVD)方法在不同功率下制备了一系列硅薄膜材料,研究了材料晶化率和生长速度随功率变化的规律, 进而研究PECVD方法沉积硅薄膜过程中的硅烷反应状态,并提出可以根据硅烷耗尽程度的不同将硅烷反应状态分为未耗尽、耗尽和过耗尽三种.然后,对不同硅烷反应状态下的材料结构、光电性能以及相应的电池进行了研究,并指出适合于太阳电池本征层的高质量微晶硅材料应该沉积在硅烷耗尽状态. 关键词: 耗尽状态 微晶硅 光发射谱  相似文献   
142.
A passive Q-switched large-mode-area Yb-doped fibre laser is demonstrated using a GaAs wafer as the saturable absorber. A high Yb doping concentration double-clad fibre with a core diameter of 30μm and a numerical aperture of 0.07 is used to increase the laser gain volume, permitting greater energy storage and higher output power than conventional fibres. The maximum average output power is 7.2W at 1080nm wavelength, with the shortest pulse duration of 580ns and the highest peak power of 161W when the laser is pumped with a 25W diode laser operating at 976nm. The repetition rate increases with the pump power linearly and the highest repetition rate of 77kHz is obtained in the experiment.  相似文献   
143.
应用Mises屈服条件分析内边界简支环板在线性荷载作用下的极限荷载.考虑到Mises屈服条件的非线性,文中应用加权余量法进行分析.针对线性荷载的不同分布形武,给出极限荷载的计算公武与数值结果,画出极限荷载的影响曲线,并与最大弯矩极限条件的数值结果进行了比较,说明结果是合理的.  相似文献   
144.
采用水热法,并在EDTA加入前后,分别以去离子水、乙醇为反应溶剂的体系中,合成了掺杂18;Yb3+、2;Er3+的NaYF4磷光上转换纳米材料.实验表明,当EDTA∶ Ln3+(Ln=Y,Yb,和Er)的比例为1.6∶ 1时,在以乙醇为反应溶剂的体系中所得的材料在无需高温处理的情况下,得到了六角晶相较纯、颗粒分散较好、粒度大小均匀的上转换发光材料.且材料在可见光区具有较高的发射强度,适于应用到太阳能电池上.  相似文献   
145.
宽带隙的无机空穴传输材料硫氰酸亚铜(CuSCN)具有低成本、高载流子迁移率、良好的稳定性,以及优异的光透过性等优点,是一种非常有潜力的空穴传输层材料.但是目前基于CuSCN空穴传输层的n-i-p型钙钛矿太阳电池(PSCs)的光电转换效率(PCE)比基于spiro-OMeTAD的电池效率低很多,其主要原因为电池的开路电压较低.本研究团队发现钙钛矿吸收层带隙对基于CuSCN的电池开路电压有较大的影响,本文分别制备了基于带隙为1.55 eV,1.60 eV以及1.65 eV的钙钛矿太阳电池,其中基于CuSCN的器件的效率分别为12.8;,14.4;,10.7;(基于spiro-OMeTAD的钙钛矿太阳电池效率分别为20.8;,19.1;和17.5;).通过研究发现1.60 eV带隙的钙钛矿能够与CuSCN空穴传输层(HTL)之间形成较好的界面能级匹配,获得最高的效率,电池的开路电压能够达到1.06 V,电池PCE为14.4;.更重要的是在相对湿度(RH)30;~40;的空气中,未封装的基于CuSCN HTL钙钛矿太阳电池经过120℃处理1 h后仍能够保持原来性能的92.4;,而基于spiro-OMeTAD HTL钙钛矿太阳电池只能保持原来性能的49.7;.这表明基于CuSCN的n-i-p型钙钛矿太阳电池具有良好的热稳定性,是制备稳定钙钛矿太阳电池的理想空穴传输材料之一.  相似文献   
146.
氧化镍作为高效钙钛矿太阳电池中常用无机空穴传输层材料,具有良好的光学透过性及化学稳定性,并且还可以通过磁控溅射等方法进行大面积制备,且成本低廉。然而相比于有机空穴传输材料,氧化镍和钙钛矿界面处的能级失配、缺陷及不良化学反应等限制了基于氧化镍空穴传输层的宽带隙钙钛矿太阳电池的性能。为解决这一问题,本文提出了采用(2-(9H-咔唑-9-基)乙基)膦酸((2-(9H-carbazol-9-yl) ethylphosphonic acid, 2PACz)自组装层作为氧化镍/宽带隙钙钛矿界面修饰材料。该分子可以有效钝化氧化镍表面缺陷、调节上层钙钛矿的成膜及促进界面电荷传输,最终宽带隙钙钛矿太阳电池的光电转换效率由16.18%提升至18.42%。本工作为氧化镍空穴传输层在宽带隙钙钛矿太阳电池中的应用提供了一种可借鉴的策略。  相似文献   
147.
实现高速沉积对于薄膜微晶硅太阳电池产业化降低成本是一个重要手段.采用超高频等离子体增强化学气相沉积(VHF-PECVD)技术,实现了微晶硅硅薄膜的高速沉积,并通过改变气体总流量改变气体滞留时间,考察了气体滞留时间在化学气相沉积(CVD)过程中对薄膜的生长速率以及光电特性和结构特性的影响.采用沉积速率达到12?/s的高速微晶硅工艺制备微晶硅电池,电池效率达到了5.3%. 关键词: 气体滞留时间 高速沉积 微晶硅 超高频等离子体增强化学气相沉积  相似文献   
148.
采用空间分辨光发射谱和傅里叶变换功率阻抗分析仪研究了衬底偏压和辉光功率对微晶硅薄膜沉积过程中的等离子体光学与电学特性的影响.研究表明:在交流偏压(AC)、悬浮(floating)、负直流加交流(-DC+AC)偏压下,Hα发射强度空间分布规律相似,平均鞘层长度相等;正直流加交流(+DC+AC)偏压和接地(grounded)时Hα发射强度显著增强,并存在双峰(double layers)现象.增大功率,Hα发射强度也随着增大,并在17W与22W之间产生跳变.电学测试发现功率增大,等离子体电阻降低,电抗降低,电 关键词: 等离子体 光发射谱 衬底偏压 辉光功率  相似文献   
149.
本文研究了pin型非晶硅(a-Si)太阳电池p/i界面掺碳缓冲层(C-buffer layer)沉积时间对电池效率和稳定性的影响.研究发现,随着掺碳缓冲层沉积时间的增加,太阳电池的初始效率有所增加,当沉积时间增加到约60s时,电池的初始效率达最大值,而后随着沉积时间的继续增加,电池效率下降.而在太阳电池的稳定性方面,当缓冲层沉积时间小于50s时,随着沉积时间的增加,电池衰退率增大;大于50s后,电池的衰退率又随沉积时间的增大而减小.  相似文献   
150.
表面等离子激元非线性表面增强拉曼散射效应   总被引:1,自引:0,他引:1       下载免费PDF全文
黄茜  熊绍珍  赵颖  张晓丹 《物理学报》2012,61(15):157801-157801
本文采用热蒸发法制备得到纳米Ag颗粒作为增强拉曼衬底, 利用入射光子与纳米颗粒表面价电子的相互作用机理, 激发出高能表面等离子激元, 其表面等离子形成的高能"热点"起到表面增强拉曼散射效果. 通过比较不同入射光强下的拉曼峰强, 指出纳米Ag颗粒的增强拉曼散射效果可以实现低探测光强下的高散射强度, 即纳米Ag颗粒的表面等离子激元具有非线性的表面增强拉曼散射效果, 可降低对样品的光、热损伤, 以利于拓展拉曼散射光谱的应用范围. 同时比较不同纳米Ag颗粒衬底的表面增强拉曼散射效果表明, 采用的热蒸发工艺具有较大的工艺域度, 具有较强的工艺兼容性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号