首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   46篇
  国内免费   37篇
化学   41篇
晶体学   39篇
力学   1篇
物理学   63篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2017年   5篇
  2016年   4篇
  2015年   8篇
  2014年   16篇
  2013年   24篇
  2012年   9篇
  2011年   10篇
  2010年   10篇
  2009年   12篇
  2008年   11篇
  2007年   3篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
71.
通过在CuI的强碱溶液中Ullmann反应合成了纯度较高的1,5-萘二胺衍生物NPN,制备了NPN薄膜。利用紫外/可见吸收光谱和荧光发射光谱的溶剂效应对化合物NPN的发光行为进行了研究,了解了该分子在基态和激发态时的性质。差热扫描法(DSC)测定其玻璃化温度(t)高达129.7℃,熔点达245.7℃。结果表明,NPN薄膜在365nm紫外光的激发下,产生发光峰在448.6nm附近、谱线带宽为72.6nm的蓝光发射,发光亮度高,色纯度高。该材料具有良好的热稳定性,期望通过设计合理的器件结构实现电致蓝光发射。同时NPN保持了TPD、NPB三苯胺的基本结构特征,具有较好的给电子性,而且引入1,5-萘二胺结构单元,使结构更紧凑,有利于空穴迁移率的提高,也可望成为优良的空穴传输材料。  相似文献   
72.
研究了在湿法腐蚀Ga N衬底上生长的Zn O纳米棒阵列的微结构和光学性能。相比于未经腐蚀及腐蚀5 min、10 min的Ga N上生长的Zn O纳米棒阵列,在腐蚀8 min的Ga N上生长的Zn O纳米棒阵列最细密,光学性能最好,其相应PL光谱峰强积分比IUV/Ivis最大(70.92)。因为此时Ga N衬底中的位错基本全部在表面露头,Zn O容易附着而形成更多的形核种子,并且衬底的位错在表面的边缘有助于诱导Zn O晶体的外延生长,所以Zn O棒更加细密,晶体质量更高,从而光学性能更好。  相似文献   
73.
合成了高分子金属配合物聚8-羟基喹啉镓(Gaqq3)n.利用红外吸收光谱、X射线衍射谱(XRD)研究了配合物的分子结构、物相结构;利用热重(TG)分析研究了配合物的热稳定性;利用紫外吸收光谱、荧光激发和发射光谱研究了该配合物的光物理性能.结果表明:(Gaqq3)n的热分解温度为443.6℃,具有较高的热稳定性.(Gaqq3)n的紫外吸收带位于250~500 nm,存在较强的带尾吸收,表明禁带中存在带隙缺陷态.(Gaqq3).的荧光激发带位于380~456nm,荧光发射峰位于568nm,为橙红光发射.光学带隙2.49 eV.与Gaq3相比,荧光强度有所减弱,这是由于次甲基相连的两个喹啉环的扭曲导致了(Gaqq3)n的刚性和共平面性不好;由于分子共轭体系的增大,使(Gaqq3)n分子的π电子更加离域化,导致了荧光发射峰发生了红移.(Gaqq3)n有望在有机电致发光器件和有机光伏器件中得到应用.  相似文献   
74.
常压下在空气中以氧化锌和碳粉为原料,利用高温碳热还原反应法制备出了自组装ZnO纳米晶体,采用SEM、XRD、PL等手段对产物进行了表征。结果表明产物为自组装多层六方管状结构的晶体,且是单一的六角晶系纤锌矿ZnO相。分析表明其生长机理为首先形成ZnO薄片,然后薄片再卷曲为管状物,其中碳热能和静电能为卷曲驱动力。室温光致发光谱显示,ZnO六方管晶体在以545nm为中心的范围内,形成较强较宽的绿光发射峰,而红光发射的强度增幅尤其突出。  相似文献   
75.
有机-无机杂化钙钛矿太阳电池因具有光电转化效率高和制备成本低廉等优点而备受关注。钙钛矿薄膜中的缺陷是限制钙钛矿电池性能进一步提升的重要因素,而缺陷调控又依赖于薄膜制备方法的发展和进步。两步法是制备钙钛矿薄膜和电池的主要方法之一,但目前对在两步法前驱液中引入添加剂如何影响钙钛矿薄膜结晶过程和缺陷密度的认识不足。本工作致力于利用光谱、X射线衍射、扫描电镜和电学测试等技术手段研究在两步法的铅盐溶液中引入碘化钾(KI)对卤化铅溶液、钙钛矿转化、缺陷密度和电池性能的影响。实验结果表明,适量KI的引入有利于高碘配位数铅碘配合物的生成,促进卤化铅向钙钛矿相的室温转化,并有效降低钙钛矿薄膜中的缺陷密度,钙钛矿电池的光电转化效率从无KI时的17.49%提高到19.17%。本工作的研究结果不仅有助于加深对两步法制备钙钛矿过程中结晶规律的理解,而且有助于进一步推动钙钛矿薄膜质量和器件性能的提升。  相似文献   
76.
以1-(6-(9-咔唑基)己基)-2-苯基咪唑(Czhpi)为主配体,2-(5-(4-氟苯基)-1,3,4-三唑)吡啶(fpptz)为辅助配体,合成了一种溶解性好的可用于湿法旋涂制备有机电致发光器件的磷光铱(Ⅲ)配合物(Czhpi)2Ir(fpptz)。通过紫外-可见吸收光谱、发射光谱、低温磷光光谱及热重分析对其光物理性质和热稳定性进行了研究。将配合物(Czhpi)2Ir(fpptz)掺杂在1,3-二唑-9-基苯(mCP)中,作为发光层,经湿法旋涂制备了有机发光二极管器件。结果显示,该器件的最大电致发光谱峰位于523 nm,最大电流效率约5.74 cd·A-1,最大功率效率为2.88 lm·W-1,色坐标显示在(0.31,0.41)附近。  相似文献   
77.
p型4H-SiC是制备高功率电力电子器件的理想衬底材料,但由于工艺技术的制约,国内尚无能力生产高质量、大尺寸、低电阻的p型4H-SiC单晶衬底。本文使用物理气相传输(PVT)法制备了直径为4英寸(1英寸=2.54 cm)Al掺杂的p型4H-SiC单晶衬底。通过KOH腐蚀表征样品位错密度,使用高分辨X射线衍射(HRXRD)表征其晶体质量,利用拉曼光谱扫描确定其晶型,采用非接触式电阻测试仪测试其电阻率。结果表明,衬底整体位错密度较低,结晶质量良好,晶型稳定且衬底全片电阻率小于0.5 Ω·cm。通过第一性原理平面波超软赝势方法对本征4H-SiC及Al元素掺杂后样品的体系进行能带结构、电子态密度的计算。结果表明Al掺杂后样品禁带宽度减小,费米能级穿过价带,体现出p型半导体的特征。研究结果为大规模生产高质量、低电阻的p型4H-SiC衬底提供思路。  相似文献   
78.
使用金属有机化学气相沉积(metal organic chemical vapor deposition, MOCVD)方法生长了三个具有不同垒层温度的InGaN/GaN量子阱。由于高密度V型坑的形成,完整的量子阱结构被破坏,转变成了InGaN量子点(quantum dots, QDs)/量子阱(quantum well, QW)复合结构。通过变功率光致发光谱和变温光致发光谱,分析了在不同的垒层温度下量子限制斯塔克效应(quantum confined Stark effect, QCSE)、非辐射复合中心密度和载流子局域化效应的变化。结果表明:在较低的垒层温度下,QCSE较弱,因为在较低的温度下,V型坑的深度较深,应力释放较明显,残余应变较低;非辐射复合中心密度也随着温度的升高而逐渐增大;样品的内量子效率(internal quantum efficiency, IQE)随着垒层生长温度的升高而降低。QCSE的增强和非辐射复合中心密度的增大是垒层生长温度升高时内量子效率下降的主要因素。  相似文献   
79.
一种新型的蓝光发射材料δ-Alq3的制备与光谱分析   总被引:1,自引:1,他引:0  
制备了一种新型的蓝光发射材料δ-Alq3,测试了其红外吸收光谱、X射线衍射谱、紫外-可见光吸收光谱、光致发光光谱和电致发光光谱,并通过与δ-Alq3的光谱性能的比较,研究了Alq3分子空间结构与光谱性能之间的关系.结果表明:δ-Alq3分子空间结构经过真空加热发生变化,生成对称性较差的δ-Alq3;分子空间结构的改变引起Alq3分子中酚环电子云密度的降低和相邻分子间的共轭效应的减弱,导致在紫外-可见吸收光谱中δ-Alq3长波段的π-π*电子跃迁吸收峰向短波方向的移动,在光致发光光谱中δ-Alq3的最大发射峰波长为480 nm,比α-Alq3的最大发射峰波长(515 nm)蓝移35 nm,在电致发光光谱中α-Alq3和δ-Alq3的最大发射峰波长都为520 nm.  相似文献   
80.
8-羟基喹啉锂的合成、表征及发光特性   总被引:8,自引:3,他引:8  
通过液相反应合成了高纯度、高产率的8-羟基喹啉锂(Liq)粉体,制备了Liq薄膜,通过IR光谱、UV吸收谱、X射线衍射谱、荧光光谱对其结构和性能进行了表征,并利用UV吸收谱、电化学循环伏安法、荧光光谱研究了它的电子能级结构。结果表明,pH值和溶剂对Liq的合成有很大影响,而温度的影响不大。利用真空热蒸镀很容易制备高质量、无定性薄膜,Liq的熔点365℃,具有很高的热稳定性。Liq的LUMO能级2.94eV,HOMO能级5.95eV,光学禁带宽度3.01eV.在363nm紫外光的激发下。产生发光峰在452nm附近、半峰全宽为69.4nm的蓝光发射,发光亮度高,色纯度高。由于电子与声子的强耦合作用以及带隙态的影响,产生了5424cm^-1的斯托克斯频移。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号