首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
  国内免费   14篇
物理学   24篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2005年   1篇
  2001年   2篇
  1994年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
11.
Design and simulations for the detector based on DSSSD   总被引:1,自引:0,他引:1  
The present paper describes the design and simulation results of a position-sensitive charged particle detector based on the Double Sided Silicon Strip Detector (DSSSD). Also, the characteristics of the DSSSD and its testing result were are discussed. With the application of the DSSSD, the position-sensitive charged particle detector can not only give particle flux and energy spectra information and identify different types of charged particles, but also measure the location and angle of incident particles. As the detector can make multi-parameter measurements of charged particles, it is widely used in space detection and exploration missions, such as charged particle detection related to earthquakes, space environment monitoring and solar activity inspection.  相似文献   
12.
Anode floating voltage is predicted and investigated for silicon drift detectors (SDDs) with an active area of 5 mm2 fabricated by a double-side parallel technology. It is demonstrated that the anode floating voltage increases with the increasing inner ring voltage, and is almost unchanged with the external ring voltage. The anode floating voltage will not be affected by the back electrode biased voltage until it reaches the full-depleted voltage (-50 V) of the SDD. Theoretical analysis and experimental results show that the anode floating voltage is equal to the sum of the inner ring voltage and the built-in potential between the p+ inner ring and the n+ anode. A fast checking method before detector encapsulation is proposed by employing the anode floating voltage along with checking the leakage current, potential distribution and drift properties.  相似文献   
13.
One of the instruments onboard the China Seismic Electromagnetic Satellite (CSES) is the Low Energy Particle Detector (LEPD). The primary objective of LEPD is to provide measurements of the fluxes, energy spectra and pitch angles of 100 keV to 10 MeV electrons and protons from 2 to 50 MeV in the Earth's magnetosphere. The geometric factor is one of the principle parameters of a detector, which converts the physical quantity-count rate to the particle quantity-flux. In this paper, we calculated the geometric factor of LEPD via computer modeling of an isotropic radiation environment. It was first demonstrated that the radiation intensity related should obey a cosine-law, then a general sampling method of generating this distribution via GPS of GEANT4 was explained. Furthermore, combined with flux normalization, a comparison of the geometric factor calculation of a set of 2-layer detectors with different shapes (cylinder, truncated cone and rectangle) was performed. Results show a generally good agreement between simulation and analytical calculations for the cylinder and truncated cone detectors, and the result of the rectangular one, for which there is no accurate analytical formula, is consistent with the previous simulated results by others. As a practical instance of the 2-layer rectangle detector, the geometric factor of LEPD is 10.336±0.036 m cm2·sr for 10 MeV proton and 8.211±0.032 m cm2·sr for 8 MeV electron.  相似文献   
14.
The low energy particle detector (LEPD) is one of the main payloads onboard the China seismic electromagnetic satellite (CSES). The detector is designed to ascertain space electrons (0.1-10 MeV) and protons (2-50 MeV). It has the capability of identifying the electrons and protons, to measure the energy spectrum and the incident angle of the particles. The LEPD is made up of a silicon tracker system, a CsI (Tl) mini-calorimeter, an anti-coincidence system made by plastic scintillator, as well as electronics and a data acquisition system (DAQ). The tracker is also a kind of E-E telescope; it consists of two layers of double-sided silicon strip detectors (DSSD). The signals emerging from the silicon tracker can be read out by two pieces of application specific integrated circuit (ASIC), which also can generate an event trigger for the LEPD. The functions of the DSSD system in the LEPD for charged particles were tested by 241Am @5.486 MeV α particles. The results show that the DSSD system works well, and has high performance to detect charged particles and measure the position of incident particles.  相似文献   
15.
A radiation gene box (RGB) onboard the SJ-10 satellite is a device carrying mice and drosophila cells to determine the biological effects of space radiation environment. The shielded fluxes of different radioactive sources were calculated and the linear energy transfers of γ-rays, electrons, protons and α-particles in the tissue were acquired using A-150 tissue-equivalent plastic. Then, a conceptual model of a space radiation instrument employing three semiconductor sub-detectors for deriving the charged and uncharged radiation environment of the RGB was designed. The energy depositions in the three sub-detectors were classified into 15 channels (bins) in an algorithm derived from the Monte Carlo method. The physical feasibility of the conceptual instrument was also verified by Monte Carlo simulations.  相似文献   
16.
Silicon photomultipliers (SiPMs) are a new generation of semiconductor-based photon counting devices with the merits of low weight, low power consumption and low voltage operation, promising to meet the needs of space particle physics experiments. In this paper, comparative studies of SiPMs and traditional vacuum photomultiplier tubes (PMTs) have been performed regarding the basic properties of dark currents, dark counts and excess noise factors. The intrinsic optical crosstalk effect of SiPMs was evaluated.  相似文献   
17.
The Active Particle-induced X-ray Spectrometer (APXS) is one of the payloads on board the Yutu rover of the Chang''E-3 mission. In order to assess the instrumental performance of APXS, a ground verification test was performed for two unknown samples (basaltic rock, mixed powder sample). In this paper, the details of the experiment configurations and data analysis method are presented. The results show that the elemental abundance of major elements can be well determined by the APXS with relative deviations <15 wt.% (detection distance=30 mm, acquisition time=30 min). The derived detection limit of each major element is inversely proportional to acquisition time and directly proportional to detection distance, suggesting that the appropriate distance should be <50 mm.  相似文献   
18.
A readout electronics system used for space cosmic-ray charge measurement for multi-channel silicon detectors is introduced in this paper, including performance measurements. A 64-channel charge sensitive ASIC (VA140) from the IDEAS company is used. With its features of low power consumption, low noise, large dynamic range, and high integration, it can be used in future particle detecting experiments based on silicon detectors.  相似文献   
19.
A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved.  相似文献   
20.
羊八井50m2 RPC探测阵列的Monte Carlo模拟   总被引:1,自引:0,他引:1  
利用MonteCarlo模拟研究了在西藏羊八井进行的 50m2 RPC宇宙线探测阵列实验 .对于实验数据分析给出方位角分布不均匀的结果进行验证和分析 ,得出在尺寸不对称 (8 6× 6 1m2 )的小面积阵列上x和y附近方向重建误差不同 ,从而导致重建方位角分布不均匀 .另外利用模拟数据给出了该阵列的角分辨、能谱响应等  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号