首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   45篇
  国内免费   71篇
化学   112篇
晶体学   5篇
力学   25篇
综合类   4篇
数学   22篇
物理学   118篇
  2023年   7篇
  2022年   15篇
  2021年   7篇
  2020年   3篇
  2019年   6篇
  2018年   13篇
  2017年   9篇
  2016年   4篇
  2015年   4篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   11篇
  2010年   3篇
  2009年   11篇
  2008年   5篇
  2007年   2篇
  2006年   8篇
  2005年   2篇
  2004年   6篇
  2003年   7篇
  2002年   7篇
  2001年   9篇
  2000年   5篇
  1999年   10篇
  1998年   11篇
  1997年   12篇
  1996年   5篇
  1995年   9篇
  1994年   14篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   3篇
  1965年   1篇
  1960年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
41.
本文通过Er~(3 )离子激发过程的效率和最终发射过程的效率测定了Yb~(3 )—Er~(3 )激活的上转换磷光体的效率。激发过程依赖于红外激发强度。我们用不同的基质晶格,激发到选定的Er~(3 )能级,测量了发射过程的效率,而且作为Yb~(3 )和Er~(3 )浓度的函数。现在知道的最好的上转换磷光体之一,α-NaYF_4—0.20Yb—0.03Er的绿色发光效率约为6%。  相似文献   
42.
甲醇是重要的化工原料和溶剂,也是一种典型的挥发性有机物(VOCs),其排放会对人体和大气环境造成危害.迄今为止,最有效的消除低浓度VOCs的方法是催化氧化.该方法具有VOCs去除效率高、起燃温度低、设备简单且无二次污染等优点.众所周知,负载贵金属催化剂对VOCs氧化显示良好的低温活性,但反应气流中的水分会降低贵金属的催化性能.研究表明,与单一贵金属催化剂相比,贵金属合金催化剂不仅具有高的催化活性,而且还具有良好的水热稳定性.尽管已有文献报道了二元贵金属合金催化剂对VOCs的催化氧化,然而VOCs在三元贵金属合金上催化氧化的研究则较少.本文采用三维有序介孔结构的二氧化硅(KIT-6)硬模板法和聚乙烯醇保护的硼氢化钠还原法制备了0.68 wt%和0.93 wt%Ag_0.51Au_0.65Pd/meso-Co_3O_4三元贵金属合金催化剂以及0.28 wt%Ag/meso-Co_3O_4,0.35 wt%Au/meso-Co_3O_4和0.33 wt%Pd/meso-Co_3O_4单一贵金属催化剂.利用电感耦合等离子体-原子发射光谱(ICP-AES)、X射线衍射(XRD)、透射电子显微镜(TEM)、高角环形暗场-扫描透射电子显微镜(HAADF-STEM)、X射线光电子能谱(XPS)和氢气-程序升温还原技术表征了催化剂的物化性质.催化剂的活性评价在固定床石英微型反应器中进行,反应气组成为0.1%甲醇+氧气+氮气(平衡气),甲醇/氧气摩尔比为1/200,空速约为80000 mL g–1 h–1,利用气相色谱检测反应物和产物的浓度.广角度XRD结果表明具有立方晶相结构.XRD谱中未检测到Ag,Au和Pd的衍射峰,系贵金属负载量低且均匀分散在载体表面所致.贵金属粒径为2.8-4.5 nm.小角度XRD和TEM结果表明具有有序介孔结构.从HAADF-STEM照片可以观察到中的贵金属形成了Ag-Au-Pd合金.BET结果显示,所制得催化剂的比表面积为115-120 m~2/g,孔径为5.7-6.0 nm,孔容为0.15-0.16 cm3/g.XPS结果表明,贵金属与载体之间较强的相互作用使0.68 wt%Ag_(0.75)Au_(1.14)Pd/meso-Co_3O_4具有最低的表面摩尔比,从而使该催化剂表面拥有更多的氧空位,有利于吸附和活化氧气,提高表面吸附氧浓度,从而提高催化活性具有最低的还原温度(即最好的低温还原性),有利于催化活性的提高.因此,高分散的纳米粒子、高的吸附氧浓度、优良的低温还原性以及载体与粒子之间强的相互作用是0.68Ag_(0.75) Au_(1.14)Pd/meso-Co_3O_4具有最高催化活性(当空速为80000 mL g–1 h–1时和)的主要原因.在反应温度为110°C和空速为80000 mL g–1 h–1的条件下,向反应体系中分别引入3.0 vol%水蒸气和5.0 vol%二氧化碳,甲醇转化率分别下降6.0%和7.0%;当切断水和二氧化碳后,甲醇转化率均恢复到在无水和二氧化碳时的数值.因此,水和二氧化碳对该催化剂的失活是可逆的.换句话说,0.68 wt%Ag_(0.75)Au_(1.14)Pd/meso-Co_3O_4具有优良的水热稳定性和抗二氧化碳中毒能力.  相似文献   
43.
44.
对100 kHz运转的腔倒空薄片激光器的输出特性进行了理论和实验研究。首先建立起腔倒空薄片激光器的速率方程理论模型,模型中考虑了单位时间谐振腔中新增的自发辐射光子数,对其占总自发辐射光子数的比例进行了分析,并结合一些参数进行了仿真。进一步搭建了重复频率为100 kHz的腔倒空薄片激光器实验装置,获得了平均功率为253 W的纳秒激光脉冲输出,光光效率约为35.2%,脉冲宽度为10.4 ns,单脉冲能量为2.53 mJ,脉冲的峰值功率超过了200 kW,x和y方向的光束质量M2分别为9.77和9.27。针对腔倒空调Q的动力学稳定性问题,研究了普克尔盒开关时间对输出平均功率和输出脉冲稳定性的影响,实验中观察到了倍周期分岔和确定性混沌现象,从理论上对这个现象进行了仿真分析,仿真结果可与实验结果相符。  相似文献   
45.
宋云霞  梁飞  田皓天  吴燕  罗敏 《化学学报》2022,80(2):105-109
分子结构设计是开发新化合物和通过原子尺度操纵优化晶体结构的一种引人注目的策略. 在这个工作中, 利用分子工程的思想, 基于SBBO结构, 成功设计并合成两个新型氟碳酸盐KMgLi2(CO3)2F和RbMgLi2(CO3)2F. 在两个结构中, a-b平面是由CO3和LiO3F阴离子基团组成的无限[Li3C3O6F3]层, 进一步相邻的层通过F原子连接形成一个独特的[Li6C6O12F3]双层. 这种结构特征对改善晶体的层状生长习性和消除晶体的多晶性有很大的帮助. 光学测试表明, 该系列晶体具有大的双折射和短的紫外截止边, 是深紫外双折射晶体良好的候选材料.  相似文献   
46.
样品(0.400 0 g)置于50 mL样品管中,加入盐酸-硝酸-水(3+1+4)混合液10 mL,饱和氟化氢铵溶液1.0 mL,经石墨消解仪斜坡升温进行消解。消解液冷却10 min,用水定容至50 mL。分取10.0 mL,用水稀释至20 mL,所得溶液采用电感耦合等离子体质谱法测定其中银及铂族元素(钌、铑、钯、铱、铂、金)的含量。以标准加入法补偿基体效应制作标准曲线。在质谱分析中采用标准模式。7种元素的检出限(3s)在0.01~0.80μg·L^(-1)之间。按标准加入法进行回收试验,回收率在94.0%~105%之间,相对标准偏差(n=11)在0.70%~2.1%之间。按上述方法分析铜冶炼渣尾矿样品,结果与石墨炉原子吸收光谱法测定结果基本一致。  相似文献   
47.
“生物无机化学”是近年来在生物学和无机化学的边缘上发展起来的一门新学科。它的主要任务是在分子水平上研究生命金属和生物配体之间的相互作用、所形成的生物配合物的结构和性能以及在活体中的功能。 “稀土生物无机化学”是70年代初出现的新课题,在1972年美国第十次稀土研究会  相似文献   
48.
基于渐近摄动理论和Galer-kin方法,本文提出分析结构非线性问题的杂交可变基Galer-kin方法。本文方法首次引入可变基函数的概念,可大幅度降低计算量,而且在有限元法等数值方法中易于推广应用,在解决非线性问题领域有广泛应用前景。最后本文分析圆板大挠度问题和扁球壳大挠度问题,以验证本文方法的有效性。  相似文献   
49.
利用X射线光电子能谱(XPS)、X射线衍射(XRD)及扩展的X射线精细结构谱(EXAFS)对氧化钴在二氧化钛表面的分散及结构进行了系统研究。结果表明:氧化钴能够在二氧化钛表面实现单层分散,其分散阈值为每平方纳米的二氧化钛分布1.4个钴原子。当负载量小于分散阈值时,钴以二价存在并形成分立的钴氧六配位[CoO6];而当负载量大于分散阈值时,晶体Co3O4在二氧化钛表面形成,钴以两种形式存在,即分散态的钴氧六配位[CoO4]和晶态的Co3O4。实验还表明二氧化钛对二价钴具有明显的稳定作用。  相似文献   
50.
<正>氧化镓(β-Ga_2O_3)单晶是一种第四代超宽禁带氧化物半导体,其禁带宽度为4.8~4.9eV,具有独特的紫外透过特性(吸收截止边~260nm);击穿电场强度高达8MV/cm,是Si的近27倍、SiC及GaN的2倍以上,巴利加优值分别是SiC、GaN的10倍、4倍以上,并且可以采用熔体法生长大尺寸体单晶,因此β-Ga_2O_3已成为超高压功率器件和深紫外光电子器件的优选材料之一。由于其在军事、能源、医疗、环境等领域的重要应用价值,近年来,氧化镓材料及器件的研究与应用成为当前美国、日本、德国等国家的研究热点和竞争重  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号