首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   16篇
物理学   20篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2003年   1篇
排序方式: 共有20条查询结果,搜索用时 672 毫秒
11.
使用二维多群辐射扩散流体力学程序LARED-S, 模拟研究DD冰贯穿性缺陷在方波驱动DD冷冻靶内爆过程中的演化行为及其对内爆性能的影响。模拟结果表明: DD冰层贯穿性缺陷显著降低DD冷冻靶内爆的中子产额, 二维模拟产额仅为一维结果的23.8%。DD冰层贯穿性缺陷使靶丸CH(Si)的烧蚀层生成大幅度的尖钉, 穿透到芯部热斑区。在中子bang-time时刻, 热斑区混入了487 ng的烧蚀物质, 使芯部韧致辐射漏失功率相对一维理想内爆显著升高, 离子温度与DD核反应速度相应降低。同时, 高密度的烧蚀层尖钉把DD热斑推离球心, 显示明显的P1不对称性, 而且高温热斑具有定向流动速度, 降低了内爆动能转化为热斑内能的效率。  相似文献   
12.
六通黑腔是我国独立自主设计的新型激光惯性约束聚变驱动腔型。在大型激光装置上采用全束组注入方式, 首次获得了新型六通黑腔10~20倍收缩比综合内爆完整配套实验数据, 实现最高YOC2D (实验产额/二维模拟产额) 达80.4%的综合内爆性能。  相似文献   
13.
激光聚变黑腔中等离子体的热流研究   总被引:1,自引:0,他引:1       下载免费PDF全文
辐射流体采用限流的局域Spitzer-Harm(S-H)电子热流近似,在预估等离子体状态时可能与实验观察存在偏差.利用一维(1D3V)含碰撞的粒子模拟程序,研究了激光聚变黑腔中金等离子体的电子分布函数和电子热流.分析表明,在等离子体的冕区,α=Z(νos/νte)^2>1,电子分布函数表现为超高斯分布(m=3.34),克努森数λe/Le=0.011大于局域S-H理论的临界值2×10^-3.这导致了局域S-H电子热流远大于实际热流.这种实际热流受限现象将导致辐射流体模拟给出的冕区电子温度高于神光实验测量值.而在等离子体的高密度区域,电子分布函数仍表现为超高斯分布(m=2.93),克努森数λe/Le=7.58×10^-4小于局域S-H理论的临界值,限流的局域S-H电子热流具有一定的适用性.但电子热流严重依赖于限流因子,辐射流体模拟需要根据不同位置的光强和电子温度调整的大小.  相似文献   
14.
王立锋  叶文华  陈竹  李永升  丁永坤  赵凯歌  张靖  李志远  杨云鹏  吴俊峰  范征锋  薛创  李纪伟  王帅  杭旭登  缪文勇  袁永腾  涂绍勇  尹传盛  曹柱荣  邓博  杨家敏  江少恩  董佳钦  方智恒  贾果  谢志勇  黄秀光  傅思祖  郭宏宇  李英骏  程涛  高振  方丽丽  王保山  王英华  曾维新  卢艳  旷圆圆  赵振朝  陈伟  戴振生  谷建法  葛峰峻  康洞国  张桦森  乔秀梅  李蒙  刘长礼  申昊  许琰  高耀明  刘元元  胡晓燕  徐小文  郑无敌  邹士阳  王敏  朱少平  张维岩  贺贤土 《强激光与粒子束》2021,33(1):012001-1-012001-60
激光聚变有望一劳永逸地解决人类的能源问题,因而受到国际社会的普遍重视,一直是国际研究的前沿热点。目前实现激光惯性约束聚变所面临的最大科学障碍(属于内禀困难)是对内爆过程中高能量密度流体力学不稳定性引起的非线性流动的有效控制,对其研究涵盖高能量密度物理、等离子体物理、流体力学、计算科学、强冲击物理和高压原子物理等多个学科,同时还要具备大规模多物理多尺度多介质流动的数值模拟能力和高功率大型激光装置等研究条件。作为新兴研究课题,高能量密度非线性流动问题充满了各种新奇的现象亟待探索。此外,流体力学不稳定性及其引起的湍流混合,还是天体物理现象(如星系碰撞与合并、恒星演化、原始恒星的形成以及超新星爆炸)中的重要过程,涉及天体物理的一些核心研究内容。本文首先综述了高能量密度非线性流动研究的现状和进展,梳理了其中的挑战和机遇。然后介绍了传统中心点火激光聚变内爆过程发生的主要流体力学不稳定性,在大量分解和综合物理研究基础上,凝练出了目前制约美国国家点火装置(NIF)内爆性能的主要流体不稳定性问题。接下来,总结了国外激光聚变流体不稳定性实验物理的研究概况。最后,展示了内爆物理团队近些年在激光聚变内爆流体不稳定性基础性问题方面的主要研究进展。该团队一直从事激光聚变内爆非线性流动研究与控制,以及聚变靶物理研究与设计,注重理论探索和实验研究相结合,近年来在内爆重要流体力学不稳定性问题的解析理论、数值模拟和激光装置实验设计与数据分析等方面取得了一系列重要成果,有力地推动了该研究方向在国内的发展。  相似文献   
15.
利用数值模拟的方法研究了辐射驱动中心点火靶丸辐射脉冲的整形方法。根据文献对于燃料低熵压缩冲击波匹配要求的描述,设计了一个四台阶型的驱动脉冲。发现在冲击波汇聚后,燃料内的强稀疏使得烧蚀面产生额外的强冲击波,导致靶丸的熵增较大,不能满足要求。设计了三台阶加两折线形式的脉冲曲线,利用第4个冲击波的时间及强度变化抑制了稀疏波,避免额外的强冲击波产生,很好地抑制了熵增。还描述了为了避免烧蚀层烧穿而过早关闭辐射源,导致燃料压缩密度下降的问题。三台阶加两折线形式的脉冲通过控制峰值温度的时间,解决了此问题,使燃料达到很好的压缩效果。  相似文献   
16.
A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D cylindrical coordinates for the numerical simulation of the indirect-drive Inertial Confined Fusion. A number of 1-D and 2-D ignition implosion numerical simulations by using the improved LARED Integration code (ILARED) are presented which show that the 1-D numerical results are consistent with those computed by the 1-D radiation hydrodynamic code RDMG, while the simulation results of the 2-D low-mode radiative asymmetry and hydrodynamic instability growth,according to the physical analysis and anticipation, are satisfactory. The capsules driven by the sources from SGII experiments are also simulated by ILARED, and the fuel shapes agree well with the experimental results. The numerical simulations demonstrate that ILARED can be used in the simulation of the 1-D and 2-D ignition capsule implosion using the multi-group diffusion model for radiation.  相似文献   
17.
王峰  彭晓世  康洞国  刘慎业  徐涛 《中国物理 B》2013,22(11):115204-115204
A study is conducted using a two-dimensional simulation program(Lared-s)with the goal of developing a technique to evaluate the effect of Rayleigh–Taylor growth in a neutron fusion reaction region.Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program(Lared-s)and confirmed by the experimental results.A neutron temporal diagnostic(NTD)system is developed with a high temporal resolution of~30 ps at the Shen Guang-III(SG-III)prototype laser facility in China,to measure the fusion reaction rate history.With the shape of neutron reaction rate curve and the spherical harmonic function in this paper,the degree of Rayleigh–Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively.This technique,including the diagnostic system and the simulation program,may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion.  相似文献   
18.
陈晓波  康洞国  李崧  温磊  于春雷  胡丽丽  周静 《中国物理 B》2011,20(2):27801-027801
The infrared quantum cutting of oxyfluoride nanophase vitroceramics Tb(0.7)Yb(3):FOV has been studied in the present paper. The actual quantum cutting efficiency formula calculated from integral fluorescence intensity is extended to the case of Tb(0.7)Yb(3):FOV. The visible and the infrared fluorescence spectra and their integral fluorescence intensities are measured from static fluorescence experiment. Lifetime curve is measured from dynamic fluorescence experiment. It is found that the total actual quantum cutting efficiency η of the excited 5D4 level is about 93.7%, and that of excited (5D3, 5G6) levels is 93.5%. It is also found that the total theoretical quantum cutting efficiency upper limit ηx%Yb of the 485.5 nm excited <5D4 level is about 121.7%, and that of 378.5 nm excited (5D3, 5G6) levels is 137.2%.  相似文献   
19.
 激光聚变内爆实验中,在燃料中掺杂少量比例的中高Z材料,用X光光谱和X光成像测量掺杂元素的发射信息,诊断燃料的温度、密度和压缩形状。用辐射流体力学数值计算和X光成像后处理程序综合分析方法,给出了内爆靶丸优化设计,并讨论示踪材料在X光诊断中的作用。结果表明:在靶丸燃料D2中掺原子分数约1.0%的氩,内爆压缩中子产额下降约15%。由于氩线发射使整个燃料区X光发射强度提高约50倍,X光成像区域增大约30%,有利于实验诊断测量燃料芯部。为了测量燃料区的边界,在CH内壳层涂厚度0.05 μm的硫,分析表明硫Ly-α单能成像大小与流体力学计算的燃料区大小一致,可用于诊断燃料最终压缩界面。数值分析结果得到了神光Ⅱ间接驱动内爆物理相关实验的验证。  相似文献   
20.
通过对冲击波点火内爆过程的数值模拟分析点火热斑压缩及形成机制。分析了传统中心点火的内爆过程,热斑主要经历冲击波压缩和惯性压缩过程,点火主要通过惯性压缩来实现。并仔细分析了冲击波点火的内爆压缩过程,从内爆角度来看冲击波点火并不是压缩和点火分开的两步过程,点火冲击波实际参与压缩过程,点火冲击波对热斑的直接影响很有限,热斑仍然主要通过壳层的惯性压缩实现点火。利用惯性压缩的定标关系及冲击波碰撞对壳层影响规律分析了热斑增压的物理机制,冲击波点火是通过点火冲击波与回冲击波的碰撞来提高壳层的密度,从而实现热斑压力的提升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号