首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   257篇
  国内免费   1篇
化学   1篇
晶体学   5篇
物理学   264篇
  2023年   1篇
  2022年   11篇
  2021年   4篇
  2020年   5篇
  2019年   1篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   4篇
  2014年   24篇
  2013年   14篇
  2012年   28篇
  2011年   25篇
  2010年   21篇
  2009年   26篇
  2008年   13篇
  2007年   18篇
  2006年   16篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1978年   1篇
排序方式: 共有270条查询结果,搜索用时 203 毫秒
131.
Zhihong Chen 《中国物理 B》2022,31(11):117105-117105
We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors (HEMTs) with thin-barrier to minimize surface leakage current to enhance the breakdown voltage. The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si$_{3}$N$_{4}$ was deposited by plasma-enhanced chemical vapor deposition (PECVD) after removing 20-nm SiO$_{2}$ pre-deposition layer. Compared to traditional Si$_{3}$N$_{4}$ passivation for thin-barrier AlGaN/GaN HEMTs, Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54% to 8.40%. However, Si-rich bilayer passivation leads to a severer surface leakage current, so that it has a low breakdown voltage. The 20-nm SiO$_{2}$ pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga-O bonds, resulting in a lower surface leakage current. In contrast to passivating Si-rich SiN directly, devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V. Radio frequency (RF) small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to $f_{\rm T}/f_{\rm max}$ of 68 GHz/102 GHz. At 30 GHz and $V_{\rm DS} = 20$ V, devices achieve a maximum $P_{\rm out}$ of 5.2 W/mm and a peak power-added efficiency (PAE) of 42.2%. These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.  相似文献   
132.
樊继斌  刘红侠  马飞  卓青青  郝跃 《中国物理 B》2013,22(2):27702-027702
A comparative study of two kinds of oxidants(H2O and O3) with the combinations of two metal precursors [trimethylaluminum(TMA) and tetrakis(ethylmethylamino) hafnium(TEMAH)] for atomic layer deposition(ALD) hafnium aluminum oxide(HfAlOx) films is carried out.The effects of different oxidants on the physical properties and electrical characteristics of HfAlOx films are studied.The preliminary testing results indicate that the impurity level of HfAlOx films grown with both H2O and O3 used as oxidants can be well controlled,which has significant effects on the dielectric constant,valence band,electrical properties,and stability of HfAlOx film.Additional thermal annealing effects on the properties of HfAlOx films grown with different oxidants are also investigated.  相似文献   
133.
AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.  相似文献   
134.
谷文萍  张林  李清华  邱彦章  郝跃  全思  刘盼枝 《物理学报》2014,63(4):47202-047202
本文采用能量为1 MeV的中子对SiN钝化的AlGaN/GaN HEMT(高电子迁移率晶体管)器件进行了最高注量为1015cm-2的辐照.实验发现:当注量小于1014cm-2时,器件特性退化很小,其中栅电流有轻微变化(正向栅电流IF增加,反向栅电流IR减小),随着中子注量上升,IR迅速降低.而当注量达到1015cm-2时,在膝点电压附近,器件跨导有所下降.此外,中子辐照后,器件欧姆接触的方块电阻退化很小,而肖特基特性退化却相对明显.通过分析发现辐照在SiN钝化层中引入的感生缺陷引起了膝点电压附近漏电流和反向栅泄漏电流的减小.以上结果也表明,SiN钝化可以有效地抑制中子辐照感生表面态电荷,从而屏蔽了绝大部分的中子辐照影响.这也证明SiN钝化的AlGaN/GaN HEMT器件很适合在太空等需要抗位移损伤的环境中应用.  相似文献   
135.
In this paper,in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs),we demonstrate better performances of recessed-gate Al 2 O 3 MIS-HEMTs which are fabricated by Fluorine-based Si 3 N 4 etching and chlorinebased AlGaN etching with three etching times (15 s,17 s and 19 s).The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of AlGaN/GaN HEMT.Through the recessed-gate etching,the transconductance increases effectively.When the recessed-gate depth is 1.02 nm,the best interface performance with τ it =(0.20-1.59) μs and D it =(0.55-1.08)×10 12 cm 2 ·eV 1 can be obtained.After chlorine-based etching,the interface trap density reduces considerably without generating any new type of trap.The accumulated chlorine ions and the N vacancies in the AlGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices.By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times,it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.  相似文献   
136.
Pulsed metal organic chemical vapor deposition is introduced into the growth of In Ga N channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free In Ga N channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013cm-2is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that In Ga N channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional Ga N channel heterostructure. The gratifying results imply that In Ga N channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.  相似文献   
137.
An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.  相似文献   
138.
赵胜雷  陈伟伟  岳童  王毅  罗俊  毛维  马晓华  郝跃 《中国物理 B》2013,22(11):117307-117307
In this paper,the influence of a drain field plate(FP)on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor(HEMT)is investigated.The HEMT with only a gate FP is optimized,and breakdown voltage VBRis saturated at 1085 V for gate–drain spacing LGD≥8μm.On the basis of the HEMT with a gate FP,a drain FP is added with LGD=10μm.For the length of the drain FP LDF≤2μm,VBRis almost kept at 1085 V,showing no degradation.When LDFexceeds 2μm,VBRdecreases obviously as LDFincreases.Moreover,the larger the LDF,the larger the decrease of VBR.It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGDat which VBR begins to saturate in the first structure.The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.  相似文献   
139.
张伟  薛军帅  周晓伟  张月  刘子阳  张进成  郝跃 《中国物理 B》2012,21(7):77103-077103
An AlGaN/GaN superlattice grown on the top of a GaN buffer induces the broadening of the full width at half maximum of (102) and (002) X-ray diffraction rocking curves. With an increase in the Si-doped concentration in the GaN wells, the full width at half maximum of the (102) rocking curves decreases, while that of the (002) rocking curves increases. A significant increase of the full width at the half maximum of the (002) rocking curves when the doping concentration reaches 2.5 × 1019 cm-3 indicates the substantial increase of the inclined threading dislocation. High level doping in the AlGaN/GaN superlattice can greatly reduce the biaxial stress and optimize the surface roughness of the structures grown on the top of it.  相似文献   
140.
Magnetotransport measurements are carried out on the AlGaN/AlN/GaN in an SiC heterostructure, which demonstrates the existence of the high-quality two-dimensional electron gas (2DGE) at the AlN/GaN interface. While the carrier concentration reaches 1.32 × 1013 cm - 2 and stays relatively unchanged with the decreasing temperature, the mobility of the 2DEG increases to 1.21 × 104 cm2/(V·s) at 2 K. The Shubnikov—de Haas (SdH) oscillations are observed in a magnetic field as low as 2.5 T at 2 K. By the measurements and the analyses of the temperature-dependent SdH oscillations, the effective mass of the 2DEG is determined. The ratio of the transport lifetime to the quantum scattering time is 9 in our sample, indicating that small-angle scattering is predominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号