首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   44篇
  国内免费   14篇
化学   3篇
物理学   58篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   4篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
41.
田寅  冯灏  孙卫国 《物理学报》2011,60(2):23301-023301
对大多数双原子分子电子态的高阶振动能谱,现代实验方法和量子力学理论计算都难以得到较精确的振动能级.文中应用基于二阶微扰理论的代数方法(AM)以及计算双原子分子离解能的新表达式研究了碱金属双原子分子Li2的33Σ+g,13Δg和23Πg,Na2的B1Πu以及K2的41Σ+g电子态的完全振动能谱{EυAM}和离解能,理论计算结果不仅与已有的实验值相符,而且还给出了实验尚未得到的高阶振动能级.这些结果为碱金属双原子分子精确振动能谱和离解能的科学研究提供了重要数据. 关键词: 碱金属分子 高阶振动能级 离解能 代数方法  相似文献   
42.
本文用研究双原子分子振动能谱的新方法-代数方法(AM),研究了KH-X1Σ+,RbH-X1Σ+,DF-X1Σ+和DCl-X1Σ+等四个氢化物双原子分子的电子基态的振动光谱常数和振动能谱;用代数能量方法(AEM)研究了相应电子态的分子离解能.研究结果表明:使用实验获得的少数精确的振动能级[Eυ],由AM方法得到的振动能谱不仅能够重复这些电子态的已知实验能级,还能够得到用现代实验方法或精确的量子理论方法很难得到的所有高振动激发态的能级.由AEM方法能够得到比用文献发表的振动光谱常数计算获得的离解能值更准确的分子离解能.  相似文献   
43.
根据能量变分的思想,将双原子分子离子XY 的新解析势能函数ECMI势和关于离子XY 的能量自洽法(Energy-consistent-method for ion,ECMI)推广到双原子分子离子XY-的势能函数研究之中,具体研究了双原子分子离子SiC-激发态A2∏的势能函数,并与将中性双原子分子的势能函数如Morse势和Huxley-Murrrell-Sorbie(HMS)势直接用于双原子分子离子XY-的结果和ab initio计算结果进行了比较.结果表明,ECMI势和ECMI方法对双原子分子离子XY-的势能函数研究同样是成功的,在重要的渐近区和离解区优于中性势能函数,与精确的ab initio结果一致.  相似文献   
44.
45.
樊群超  冯灏  孙卫国 《物理学报》2010,59(1):203-209
结合代数方法(AM)和最近建立的计算精确的分子离解能的新解析表达式,进一步研究了部分双原子离子电子态的完全振动能谱和离解能,获得了与实验值符合得非常好的理论结果.研究结果表明,AM方法和新解析式相结合的理论方法同样也适用于双原子离子体系,该方法在理论上提供了获得双原子离子精确的振动光谱和离解能的物理新方法.  相似文献   
46.
于江周  冯灏  孙卫国 《物理学报》2008,57(7):4143-4147
采用作者改进的振动密耦合方法和基于量子力学从头计算的静电势、交换势、相关极化势,研究了低能电子与N2振动激发散射动量迁移截面. 计算结果与试验符合较好. 关键词: 动量迁移截面 低能电子 分子碰撞 振动激发  相似文献   
47.
石黎铭  吴雪科  万迪  李会东  樊群超  王中天  冯灏  王占辉  马杰 《物理学报》2019,68(10):105201-105201
本文运用Boris算法对紧凑型聚变反应装置(compact fusion reactor, CFR)中高能a粒子的运动轨道进行了数值模拟,分析了高能a粒子在不同径向电场作用下运动轨道的差异性;探究了不同径向电场对CFR装置中不同位置处a粒子约束性能的影响.研究结果表明,当正、负径向电场强度达到一定临界值时,都能够使高能a粒子很好地约束在CFR装置内部,但不同位置处径向电场强度临界值与a粒子初始条件有关.  相似文献   
48.
采用振动密耦合方法,分别应用球高斯分布极化势和优于绝热极化势,及基于量子力学从头计算的静电、交换势,得到入射电子能量2.40eV时0→2和0→3的振动激发微分散射截面,与目前优秀的实验值比较,获得了满意的结果,并从理论上分析了整个计算过程中可能影响微分散射截面精度的主要物理因素.  相似文献   
49.
吴雪科  李会东  王占辉  冯灏  周雨林 《中国物理 B》2017,26(6):65201-065201
Using the trans-neut module of the BOUT++ code, we study how the fueling penetration depth of supersonic molecular beam injection(SMBI) is affected by plasma density and temperature profiles. The plasma densities and temperatures in L-mode are initialized to be a set of linear profiles with different core plasma densities and temperatures. The plasma profiles are relaxed to a set of steady states with different core plasma densities or temperatures. For a fixed gradient, the steady profiles are characterized by the core plasma density and temperature. The SMBI is investigated based on the final steady profiles with different core plasma densities or temperatures. The simulated results suggest that the SMB injection will be blocked by dense core plasma and high-temperature plasma. Once the core plasma density is set to be N_(i0)= 1.4N_0(N_0= 1 × 10~(19)m~(-3)) it produces a deeper penetration depth. When N_(i0) is increased from 1.4N_0 to 3.9N_0 at intervals of 0.8N_0, keeping a constant core temperature of T_(e0)= 725 eV at the radial position of ψ = 0.65, the penetration depth gradually decreases. Meanwhile, when the density is fixed at N_(i0)= 1.4N_0 and the core plasma temperature T_(e0) is set to 365 eV,the penetration depth increases. The penetration depth decreases as T_(e0) is increased from 365 eV to 2759 eV. Sufficiently large N_(i0) or T_(e0) causes most of the injected molecules to stay in the scrape-off-layer(SOL) region, lowering the fueling efficiency.  相似文献   
50.
用ECM方法研究N2分子部分激发态的势能函数!   总被引:7,自引:0,他引:7       下载免费PDF全文
本文用研究势能函数的新方法-能量自洽法 (energy-consistent-me thod, ECM)研究了N2分子激发态A3∑+u态,B3∏g态,B′3 ∑-u态和W3Δu态的势能,并与曾经常使用的Morse势,Huxley-Murrell-Sorbi e (HMS)势和基于实验的Rydberg-Klein-Rees (RKR)数据进行了比较.结果表明,新的ECM 势能不仅能与基于实验的RKR数据相符合,而且还能得到实验方法难以得到,但在许多研究中又非常重要的渐近区和离解区的势能数据,而在这些区域,过去常用的Morse势和HMS势函数均难以得到正确的势能.因此,ECM势比Morse势和HMS势更加优秀.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号