首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
物理学   15篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
11.
为了给冬枣采收后成熟度分级提供理论指导,运用高光谱技术获取特征波长和计算光谱指数对其成熟度可视化分级。采集三类成熟度冬枣(未成熟果、白熟-初红果、半红-全红果)样本共336个并获取其高光谱信息,通过Savitzky-Golay(S-G)平滑对原始光谱降噪后再用Kennard-Stone(K-S)方法将样本分为训练集(226个)和测试集(110个)。选用连续投影法(SPA)和竞争性自适应重加权采样法(CARS)选择特征波长(CWs);同时从水果生理成分变化角度引入7个光谱指数(SIs)。基于SPA和CARS选取的CWs和引入的SIs分别建立偏最小二乘判别分析(PLS-DA)模型,并比较了3个模型的分级效果。结果表明:基于SPA和CARS选择的特征波长和引入的SIs建立的PLS-DA模型判别精度分别为:97.27%,95.45%和98.18%。为了直观展现判别结果,选用SIs建立的PLS-DA回归系数拟合判别向量Y的回归方程,依据Y中最大值元素所在类别为该样本预测类别的规则,将结果用不同颜色直观显示。该研究为冬枣成熟度可视化分级提供了思路,引入的SIs参数为开发适于多种水果成熟度分级的设备提供了技术支撑。  相似文献   
12.
保鲜膜能提高果蔬保水性,隔绝外界细菌侵染,延长货架期。为了准确估测覆盖保鲜膜果蔬品质的优劣,对其货架期进行预测具有重要意义。应用高光谱技术结合化学计量学方法对同等贮藏条件下覆膜新鲜菠菜叶片的货架期进行了预测。先采集五个不同贮藏时间下75盘共300片菠菜样本在可见-近红外(Vis-NIR,380~1 030 nm)与近红外(NIR,874~1 734 nm)波段的高光谱数据,然后测定不同贮藏时间下菠菜叶片叶绿素含量。提取300片覆膜菠菜叶片的平均光谱(200个为建模集,100个为预测集)后,对建模集光谱进行主成分分析(principal component analysis,PCA),发现不同贮藏期内叶片光谱数据在前3个主成分空间有一定的聚类。根据建模集光谱信息与预先赋予的不同贮藏期虚拟等级分别建立偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)模型,得到预测集样本的贮藏期总的判别准确率分别为83%(Vis-NIR)和81%(NIR)。表明,高光谱技术结合化学计量学方法能够实现对新鲜菠菜货架期的分类和预测,为消费者正确评价覆盖保鲜膜的菠菜品质提供了理论指导,也为后期果蔬货架期检测仪器的开发提供了技术支持。  相似文献   
13.
高光谱成像技术的不同叶位尖椒叶片氮素分布可视化研究   总被引:3,自引:0,他引:3  
为了快速、准确、直观估测尖椒叶片的营养水平和生长状况,利用高光谱成像技术结合化学计量学方法对不同叶位尖椒叶片氮素含量(nitrogen content, NC)的分布进行了可视化研究。按照叶片位置采摘尖椒叶片,并采集高光谱数据,然后测定相应叶片的SPAD和NC。提取出叶片的光谱信息后,采用Random-frog(RF)算法提取特征波段,分别选出5条与10条特征波段。针对选取的特征波段和全波段,分别建立偏最小二乘回归(partial leastsquares regression, PLSR)模型,结果表明采用特征波段建立的PLSR模型性能较好(SPAD:RC=0.970, RCV=0.965, RP=0.934; NC: RC=0.857, RCV=0.806, RP=0.839)。根据预测模型计算尖椒叶片高光谱图像每个像素点的SPAD与NC,从而实现SPAD与NC的可视化分布。事实上叶片的SPAD在一定程度上可以反映含氮量,二者分布图的变化趋势基本一致,验证了可视化结果的正确性。结果表明:运用高光谱成像技术可以实现对不同叶位尖椒叶片氮素分布的可视化研究,这为监测植物的生长状况和养分分布提供理论依据。  相似文献   
14.
土壤元素的丰缺是对土壤养分检测、农业按需种植和科学施肥的依据,是精准农业农情信息感知技术检测的关键点,更为农业生态、高效和优质生产提供理论指导。该研究运用激光诱导击穿光谱(LIBS)技术结合定标曲线法和偏最小二乘回归(PLSR)方法对土壤中的Al,Fe,Mg,Ca,Na和K多种元素同时进行定量分析。利用LIBS检测仪获取了五种标准土壤样品(国家编号: GBW07446,GBW07447,GBW07454,GBW07455和GBW07456)的LIBS数据之后,将每种土壤的多条谱线平均处理来消除试验误差。通过分析所获取的土壤LIBS谱线信息,选取了Al,Fe,Mg,Ca,Na和K元素的特征分析谱线和分析光谱区间,并利用谱线的峰值信息和分析光谱区间内的单个或多个谱峰的积分信息(峰面积)与对应元素浓度拟合并建立定标曲线。结果表明,基于谱峰的峰面积建立的定标曲线的线性关系优于利用峰值信息建立的定标曲线(Fe除外)。同时,针对所选的分析光谱区间和元素的浓度信息,运用PLSR建立定量分析模型,其结果明显要优于定标曲线的分析精度,这也表明LIBS技术结合化学计量学分析在未来光谱化学分析领域有很大应用前景。研究的结果不仅为现代农业的土壤养分空间分布检测和农田精准施肥技术的应用起指导作用,还为田间使用的便携式LIBS土壤检测仪的开发奠定了理论基础。  相似文献   
15.
基于高光谱成像技术的山楂损伤和虫害缺陷识别研究   总被引:1,自引:0,他引:1  
采用高光谱成像技术(420~1 000 nm)对山楂的缺陷(表面的损伤以及虫害区域)进行识别研究。共采摘了134个样品,包含损伤果46个、虫害果30个、损伤及虫害果10个和完好果48个。考虑到山楂的花萼、果梗与损伤、虫害的RGB图像有相似的外观特征,容易造成误判,利用高光谱成像系统采集了损伤、虫害、完好、花萼和果梗五个区域一共230个山楂样本的高光谱图像,并提取相应的感兴趣区域(region of interest, ROI),得到了样本的光谱数据。使用标准归一化(standard normalized variate, SNV),卷积平滑(savitzky golay, SG),中值滤波(median filter, MF),多元散射校正(multiplicative scatter correction, MSC)方法进行光谱预处理,建立偏最小二乘(partial least squares method, PLS)判别分析模型,结果表明经过SNV预处理后的预测结果较好。最后选取SNV作为预处理方法。应用回归系数法(regression coefficients, RCs)从全波段中提取10条特征波段(483,563,645,671,686,722,777,819,837和942 nm),利用Kennard-Stone算法将各类样本按照3:1的比例随机分成训练集(173个)和测试集(57个),并对其建立最小二乘支持向量机(least squares-support vector machine, LS-SVM)判别模型,山楂缺陷的正确识别率为91.23%。然后,运用主成分分析(principal componentanalysis, PCA)进行10条敏感波段下单波段图像的数据压缩,分别采用“sobel”算子和区域生长算法“Regiongrow”识别出86个缺陷山楂样本的边缘与缺陷特征区域,得出单损伤、单虫害和损伤及虫害样本的识别率分别为95.65%,86.67%和100%。研究结果表明:采用高光谱成像技术可以对山楂的损伤、虫害、花萼和果梗进行定性分析和特征识别,该研究为山楂的缺陷无损检测提供了理论参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号