首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2510篇
  免费   132篇
  国内免费   16篇
化学   1591篇
晶体学   9篇
力学   110篇
数学   602篇
物理学   346篇
  2024年   3篇
  2023年   25篇
  2022年   30篇
  2021年   49篇
  2020年   50篇
  2019年   41篇
  2018年   50篇
  2017年   24篇
  2016年   84篇
  2015年   97篇
  2014年   97篇
  2013年   159篇
  2012年   231篇
  2011年   229篇
  2010年   142篇
  2009年   150篇
  2008年   162篇
  2007年   192篇
  2006年   164篇
  2005年   147篇
  2004年   120篇
  2003年   95篇
  2002年   93篇
  2001年   36篇
  2000年   21篇
  1999年   18篇
  1998年   14篇
  1997年   16篇
  1996年   15篇
  1995年   12篇
  1994年   19篇
  1993年   11篇
  1992年   5篇
  1991年   8篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1974年   2篇
  1973年   4篇
  1920年   1篇
  1909年   2篇
  1903年   1篇
  1895年   1篇
  1891年   2篇
  1890年   2篇
  1889年   1篇
排序方式: 共有2658条查询结果,搜索用时 31 毫秒
61.
Chlorine trioxide, Cl(2)O(6), reacts with Au metal, AuCl(3), or HAuCl(4).nH(2)O to yield the well-defined chloryl salt, ClO(2)Au(ClO(4))(4). The crystal and molecular structure of ClO(2)Au(ClO(4))(4) was solved by a Rietveld analysis of powder X-ray diffraction data. The salt crystallizes in a monoclinic cell, space group C2/c, with cell parameters a = 15.074(5), b = 5.2944(2), and c = 22.2020(2) A and beta = 128.325(2) degrees. The structure displays discrete ClO(2)(+) ions lying in channels formed by Au(ClO(4))(4)(-) stacks. Au is located in a distorted square planar environment: Au-O = 1.87 and 2.06 A. [ClO(4)] groups are monodentate with ClO(b) = 1.53 and ClO(t) = 1.39 A (mean distances; O(b), oxygen bonded to Au; O(t), free terminal oxygen). A full vibrational study of the Au(ClO(4))(4)(-) anion is supported by DFT calculations.  相似文献   
62.
The Pt(111) electrode is modified by an overlayer of C6H6 (ads) upon its cycling in the 0.05-0.80 V range in aq H2SO4 + 1 mM C6H6. The C6H6 (ads) overlayer significantly changes the underpotential-deposited H (H(UPD)) and anion adsorption, and cyclic-voltammetry (CV) profiles show a sharp cathodic peak and an asymmetric anodic one in the 0.05-0.80 V potential range. The C6H6 (ads) layer blocks the (bi)sulfate adsorption but facilitates the adsorption of one monolayer of H(UPD). Cycling of the benzene-modified Pt(111) in benzene-free aq 0.05 H2SO4 from 0.05 to 0.80 V results in a partial desorption of C6H6 (ads) and in a partial recovery of the CV profile characteristic of an unmodified Pt(111). The peak potential of the cathodic and anodic feature is independent of the scan rate, s (10 < or = s < or = 100 mV s(-1)), and the peak current density increases linearly with an increase of the scan rate. Temperature variation modifies the peak potential and current density but does not affect the charge density of the cathodic or anodic feature. Temperature-dependent studies allow us to determine the thermodynamic state function for the H(UPD) adsorption and desorption. Delta G degrees(ads)(H(UPD))assumes values from -4 to -12 kJ mol(-1), while has values from 9 to 14 kJ mol(-1). The values of delta Delta G degrees (delta Delta G degrees = delat Delta G degrees(ads) + delta Delta D degrees(des)) decrease almost linearly from 6 kJ mol(-1) at theta(H(UPD) --> 0 to 0 kJ mol(-1) at theta(H(UPD) --> 1. The nonzero values of delta Delta G degrees testify that the adsorbing and desorbing H(UPD) adatoms interact with an energetically different substrate. The lateral interactions changed from repulsive (omega = 29 kJ mol(-1) at theta(H(UPD) --> 0) to attractive (omega = -28 kJ mol(-1) at theta(H(UPD) --> 1) as the H(UPD) coverage increases. The values of delta S degrees(ads)(H(UPD)) increase from 19 to 56 J K(-1) mol(-1), while those of delta S degrees(des)(H(UPD)) decrease from 45 to -30 J K(-1) mol(-1) with an increase of H(UPD) coverage. The values of delta H degrees(des)(H(UPD)) and delta H degrees(des)(H(UPD)) vary from 0 to 27 kJ mol(-1). The Pt(111)-H(UPD) surface bond energy at the benzene-modified Pt(111) electrode falls in the 191-218 kJ mol(-1) range and is weaker than in the case of the unmodified Pt(111) electrode in the same electrolyte.  相似文献   
63.
N‐(p‐Nitrophenoxy)carbonyl‐3‐morpholino‐sydnonimine (NCMS) has been prepared from 3‐morpholinosydnonimine hydrochloride. Using the Griess assay and the superoxide‐mediated reduction of ferricytochrome c, the nitric oxide (NO?) and superoxide anion (O2?) ‐ releasing properties in phosphate buffer pH 7.4 of this novel peroxynitrite donor was studied and compared with the known 3‐morpholino‐sydnonimine (SIN‐1). From compound NCMS, a series of N‐substituted sydnonimine derivatives were easily prepared that contain purine or melaminophenyl groups which specify a recognition by a trypanosomal purine transporter. The ability of these new sydnonimines to inhibit the uptake of [23H]adenosine on Trypanosoma equiperdum was studied.  相似文献   
64.
Relationships between lattice parameters of manganese dioxides and their surface properties at the solid-aqueous solution interface were investigated. The studied series ranged from ramsdellite to pyrolusite and encompassed disordered MD samples. The structural model used takes into account structural defects: Pr (rate of pyrolusite intergrowth) and Tw (rate of microtwinning). Water adsorption isotherms showed that the cross sectional area of water molecules adsorbed in the first monolayer is positively correlated to Pr. Titration of the surface charge of the MD series evidenced a positive linear relationship between the PZC and Pr (Pr=0, Tw=0, PZC=1 for ramsdellite; Pr=1, Tw=0, PZC=7.3 for pyrolusite; gamma-MD with intermediate values of Pr (0.2 to 0.45) have increasing PZC values). The rate of microtwinning appeared as a secondary factor for the increase of the PZC. The above correlations are explained by the chemical defects at the origin of the structural disorder, respectively Mn(3+)/Mn4+ substitution for Pr and Mn vacancies for Tw, which result in proton affinity and thus in increased PZC. The experimental results are compared with data collected in the literature for manganese dioxides as well as for dioxides of transition elements with tetragonal structure.  相似文献   
65.
Catechols are ubiquitous substances often acting as antioxidants, thus of importance in a variety of biological processes. The Fenton and Haber–Weiss processes are thought to transform these molecules into aggressive reactive oxygen species (ROS), a source of oxidative stress and possibly inducing degenerative diseases. Here, using model conditions (ultrahigh vacuum and single crystals), we unveil another process capable of converting catechols into ROSs, namely an intramolecular redox reaction catalysed by a Cu surface. We focus on a tri-catechol, the hexahydroxytriphenylene molecule, and show that this antioxidant is thereby transformed into a semiquinone, as an intermediate product, and then into an even stronger oxidant, a quinone, as final product. We argue that the transformations occur via two intramolecular redox reactions: since the Cu surface cannot oxidise the molecules, the starting catechol and the semiquinone forms each are, at the same time, self-oxidised and self-reduced. Thanks to these reactions, the quinone and semiquinone are able to interact with the substrate by readily accepting electrons donated by the substrate. Our combined experimental surface science and ab initio analysis highlights the key role played by metal nanoparticles in the development of degenerative diseases.

An antioxidant catechol transforms following intramolecular redox reactions into highly reactive oxygen species, a semiquinone and a quinone, on copper.  相似文献   
66.
67.
This article describes the results of experiments examining the competition between the polymer diffusion rate and the crosslinking rate in low‐glass‐transition‐temperature, epoxy‐containing latex films in the presence of a diamine. We examined films formed from donor‐ and acceptor‐labeled poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate) copolymer latex and studied the influence of several parameters on the growth rate of gel content and the rate of polymer diffusion. These factors include the molecular weight of the latex polymer, the presence or absence of a diamine crosslinking agent, and the cure protocol. The results were compared to the predictions of a recent theory of the competition between crosslinking and polymer diffusion across interfaces. In the initially formed films, polymer diffusion occurs more rapidly than the chemical reaction rate. Therefore, these films fall into the fast‐diffusion category of this model. In our system (unlike in the model), the latex polymer has a broad distribution of molecular weights and a distribution of diffusivities. The shortest chains contribute to the early time diffusion that we measure. At later stages of our experiment, slower diffusing species contribute to the signal that we measure. The diffusion time decreases substantially, and we observe a crossover to a regime in which the chemical reaction dominates. The increases in chain branching and gel formation bring polymer diffusion to a halt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4098–4116, 2002  相似文献   
68.
The stoichiometric and catalytic activations of alkyl halides and acid chlorides by the unsatured Pd(3)(dppm)(3)(CO)(2+) cluster (Pd(3)(2+)) are investigated in detail. A series of alkyl halides (R-X; R = t-Bu, Et, Pr, Bu, allyl; X = Cl, Br, I) react slowly with Pd(3)(2+) to form the corresponding Pd(3)(X)(+) adduct and "R(+)". This activation can proceed much faster if it is electrochemically induced via the formation of the paramagnetic species Pd(3)(+). The latter is the first confidently identified paramagnetic Pd cluster. The kinetic constants extracted from the evolution of the UV-vis spectra for the thermal activation, as well as the amount of electricity to bring the activation to completion for the electrochemically induced reactions, correlate the relative C-X bond strength and the steric factors. The highly reactive "R(+)" species has been trapped using phenol to afford the corresponding ether. On the other hand, the acid chlorides react rapidly with Pd(3)(2+) where no induction is necessary. The analysis of the cyclic voltammograms (CV) establishes that a dissociative mechanism operates (RCOCl --> RCO(+) + Cl(-); R = t-Bu, Ph) prior to Cl(-) scavenging by the Pd(3)(2+) species. For the other acid chlorides (R = n-C(6)H(13), Me(2)CH, Et, Me, Pr), a second associative process (Pd(3)(2+) + RCOCl --> Pd(3)(2+.....)Cl(CO)(R)) is seen. Addition of Cu(NCMe)(4)(+) or Ag(+) leads to the abstraction of Cl(-) from Pd(3)(Cl)(+) to form Pd(3)(2+) and the insoluble MCl materials (M = Cu, Ag) allowing to regenerate the starting unsaturated cluster, where the precipitation of MX drives the reaction. By using a copper anode, the quasi-quantitative catalytic generation of the acylium ion ("RCO(+)") operates cleanly and rapidly. The trapping of "RCO(+)" with PF(6)(-) or BF(4)(-) leads to the corresponding acid fluorides and, with an alcohol (R'OH), to the corresponding ester catalytically, under mild conditions. Attempts were made to trap the key intermediates "Pd(3)(Cl)(+)...M(+)" (M(+) = Cu(+), Ag(+)), which was successfully performed for Pd(3)(ClAg)(2+), as characterized by (31)P NMR, IR, and FAB mass spectrometry. During the course of this investigation, the rare case of PF(6)(-) hydrolysis has been observed, where the product PF(2)O(2)(-) anion is observed in the complex Pd(3)(PF(2)O(2))(+), where the substrate is well-located inside the cavity formed by the dppm-Ph groups above the unsatured face of the Pd(3)(2+) center. This work shows that Pd(3)(2+) is a stronger Lewis acid in CH(2)Cl(2) and THF than AlCl(3), Ag(+), Cu(+), and Tl(+).  相似文献   
69.
Reaction of the unsymmetrical phenol ligand 2-((bis(2-pyridylmethyl)amino)methyl)-6-(((2-pyridylmethyl)benzylamino)methyl)-4-methylphenol (HL-Bn) or its 2,6-dichlorobenzyl analogue (HL-BnCl(2)) with Fe(H(2)O)(6)(ClO(4))(2) in the presence of disodium m-phenylenedipropionate (Na(2)(mpdp)) followed by exposure to atmosphere affords the diiron(II,III) complexes [Fe(2)(L-Bn)(mpdp)(H(2)O)](ClO(4))(2) and [Fe(2)(L-BnCl(2))(mpdp)(CH(3)OH)](ClO(4))(2), respectively. The latter complex has been characterized by X-ray crystallography. It crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.3095(14) A, b = 20.1073(19) A, c = 19.4997(19) A, alpha = 90 degrees, beta = 94.471(2) degrees, gamma = 90 degrees, V = 5202.6(9) A(3), and Z = 4. The structure of the compound is very similar to that of [Fe(2)(L-Bn)(mpdp)(H(2)O)](BPh(4))(2) determined earlier, except for the replacement of a water by a methanol on the ferrous site. Magnetic measurements of [Fe(2)(L-Bn)(mpdp)(H(2)O)](BPh(4))(2) reveal that the two high-spin Fe ions are moderately antiferromagnetically coupled (J = -3.2(2) cm(-)(1)). Upon dissolution in acetonitrile the terminal ligand on the ferrous site is replaced by a solvent molecule. The acetonitrile-water exchange has been investigated by various spectroscopic techniques (UV-visible, NMR, M?ssbauer) and electrochemistry. The substitution of acetonitrile by water is clearly evidenced by M?ssbauer spectroscopy by a reduction of the quadrupole splitting value from 3.14 to 2.41 mm/s. In addition, it causes a 210 mV downshift of the oxidation potential of the ferrous site and a similar reduction of the stability domain of the mixed-valence state. Exhaustive electrolysis of a solution of [Fe(2)(L-Bn)(mpdp)(H(2)O)](2+) shows that the aqua diferric species is not stable and undergoes a chemical reaction which can be partly reversed by reduction to the mixed-valent state. This and other electrochemical observations suggest that upon oxidation of the diiron center to the diferric state the aqua ligand is deprotonated to a hydroxo. This hypothesis is supported by M?ssbauer spectroscopy. Indeed, this species possesses a large quadrupole splitting value (DeltaE(Q) >or= 1.0 mm.s(-)(1)) similar to that of analogous complexes with a terminal phenolate ligand. This study illustrates the drastic effects of aqua ligand exchange and deprotonation on the electronic structure and redox potentials of diiron centers.  相似文献   
70.
Calix-bis(benzocrown-6) 6 and 7 were converted into the water-soluble receptors 9, 10, 12 and 15 by introducing hydroxy, carboxy, sulfato or diethanolamino groups at the para position of the phenolic ring and/or on the benzo-ether moieties. The complexation properties of these ionophores were studied for all alkali cations in methanolic and aqueous media. Stability constants were calculated by UV-Vis spectroscopy. All ligands showed a more or less affinity for the larger cations, depending on the nature and the position of the substituents grafted on the benzo-ether chain only or both on the calixarene ring and the benzo-ether loop. For selective Cs+/Na+ separation, the efficiency of the ligands was evaluated by means of a nanofiltration system. In comparison with the known tetrahydroxylated bis-crown-6 calix[4]arene 1, compounds 9, 12 and 15 represent the most selective ligands for the Cs+ cation in a moderate salted medium ([NaNO3]=85 g/L).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号