首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17678篇
  免费   360篇
  国内免费   74篇
化学   10176篇
晶体学   135篇
力学   610篇
数学   2400篇
物理学   4791篇
  2022年   99篇
  2021年   132篇
  2020年   191篇
  2019年   145篇
  2018年   138篇
  2017年   118篇
  2016年   262篇
  2015年   285篇
  2014年   312篇
  2013年   630篇
  2012年   706篇
  2011年   886篇
  2010年   518篇
  2009年   444篇
  2008年   756篇
  2007年   806篇
  2006年   783篇
  2005年   806篇
  2004年   666篇
  2003年   546篇
  2002年   509篇
  2001年   484篇
  2000年   448篇
  1999年   274篇
  1998年   233篇
  1997年   231篇
  1996年   305篇
  1995年   282篇
  1994年   261篇
  1993年   300篇
  1992年   293篇
  1991年   263篇
  1990年   217篇
  1989年   208篇
  1988年   235篇
  1987年   213篇
  1986年   179篇
  1985年   240篇
  1984年   216篇
  1983年   175篇
  1982年   209篇
  1981年   187篇
  1980年   191篇
  1979年   190篇
  1978年   188篇
  1977年   158篇
  1976年   168篇
  1975年   131篇
  1974年   150篇
  1973年   132篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Hydrated aluminium cations have been investigated as a photochemical model system with up to ten water molecules by UV action spectroscopy in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Intense photodissociation was observed starting at 4.5 eV for two to eight water molecules with loss of atomic hydrogen, molecular hydrogen and water molecules. Quantum chemical calculations for n=2 reveal that solvation shifts the intense 3s–3p excitations of Al+ into the investigated photon energy range below 5.5 eV. During the photochemical relaxation, internal conversion from S1 to T2 takes place, and photochemical hydrogen formation starts on the T2 surface, which passes through a conical intersection, changing to T1. On this triplet surface, the electron that was excited to the Al 3p orbital is transferred to a coordinated water molecule, which dissociates into a hydroxide ion and a hydrogen atom. If the system remains in the triplet state, this hydrogen radical is lost directly. If the system returns to singlet multiplicity, the reaction may be reversed, with recombination with the hydroxide moiety and electron transfer back to aluminium, resulting in water evaporation. Alternatively, the hydrogen radical can attack the intact water molecule, forming molecular hydrogen and aluminium dihydroxide. Photodissociation is observed for up to n=8. Clusters with n=9 or 10 occur exclusively as HAlOH+(H2O)n-1 and are transparent in the investigated energy range. For n=4–8, a mixture of Al+(H2O)n and HAlOH+(H2O)n-1 is present in the experiment.  相似文献   
992.
We have quantum chemically analyzed element−element bonds of archetypal HnX−YHn molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C−C to C−F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C−F to C−I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.  相似文献   
993.
994.
Tetrahydrofuran (THF) is one of the most frequently used solvents in the MALDI TOF MS analysis of synthetic compounds. However, it should be used with caution because a trace amount of 4-hydroxybutanal (HBA) might be generated and accumulated in THF during storage. Since only a tiny amount of analytes is required in MALDI MS measurements, a trace amount of HBA might have a significant effect on the MS results. It was found that HBA will quickly react with primary and secondary amino compounds, leading to false results about the sample composition with an extra series of ions with additional mass of 70 Da in between. The formation of HBA can be inhibited by butylated hydroxytoluene (BHT) antioxidant. Therefore, when THF is required as the solvent for sample preparation, it is strongly recommended to use a BHT-stabilized one, at least for the analysis of compounds with amino groups.
Figure
?  相似文献   
995.
In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring‐13C6]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically labeled amino acid will be incorporated within the few hours of a typical laboratory experiment. GC combustion isotope ratio MS (GC‐C‐IRMS) has thus far been considered the ‘gold’ standard for the precise measurements of these low enrichment levels. However, advances in liquid chromatography‐tandem MS (LC‐MS/MS) and GC‐tandem MS (GC‐MS/MS) have made these techniques an option for human muscle FSR measurements. Human muscle biopsies were freeze dried, cleaned, and hydrolyzed, and the amino acids derivatized using either N‐acetyl‐n‐propyl, phenylisothiocyanate, or N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS analysis, respectively. A second derivative, heptafluorobutyric acid (HFBA), was also used for GC‐MS/MS analysis as an alternative for MTBSTFA. The machine reproducibility or the coefficients of variation for delta tracer‐tracee‐ratio measurements (delta tracer‐tracee‐ratio values around 0.0002) were 2.6%, 4.1%, and 10.9% for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS (MTBSTFA), respectively. FSR determined with LC‐MS/MS compared well with GC‐C‐IRMS and so did the GC‐MS/MS when using the HFBA derivative (linear fit Y = 1.08 ± 0.10, X + 0.0049 ± 0.0061, r = 0.89 ± 0.01, P < 0.0001). In conclusion, (1) IRMS still offers the most precise measurement of human muscle FSR, (2) LC‐MS/MS comes quite close and is a good alternative when tissue quantities are too small for GC‐C‐IRMS, and (3) If GC‐MS/MS is to be used, then the HFBA derivative should be used instead of MTBSTFA, which gave unacceptably high variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
996.
The preparation and electrochemical storage behavior of MoS2 nanodots—more precisely single‐layered ultrasmall nanoplates—embedded in carbon nanowires has been studied. The preparation is achieved by an electrospinning process that can be easily scaled up. The rate performance and cycling stability of both lithium and sodium storage were found to be outstanding. The storage behavior is, moreover, highly exciting from a fundamental point of view, as the differences between the usual storage modes—insertion, conversion, interfacial storage—are beneficially blurred. The restriction to ultrasmall reaction domains allows for an almost diffusion‐less and nucleation‐free “conversion”, thereby resulting in a high capacity and a remarkable cycling performance.  相似文献   
997.
Two‐dimensional exchange spectroscopy (2D EXSY) is a powerful method to study the interconversion (chemical exchange) of molecular species in equilibrium. This method has recently been realized in femtosecond 2D‐IR spectroscopy, dramatically increasing the time resolution. However, current implementations allow the EXSY signal (and therefore the chemical process of interest) only to be tracked during the lifetime (T1) of the observed spectroscopic transition. This is a severe limitation, as typical vibrational T1 are only a few ps. An IR/Vis pulse sequence is presented that overcomes this limit and makes the EXSY signal independent of T1. The same pulse sequence allows to collect time‐resolved IR spectra after electronic excitation of a particular chemical species in a mixture of species with strongly overlapping UV/Vis spectra. Different photoreaction pathways and dynamics of coexisting isomers or of species involved in different intermolecular interactions can thus be revealed, even if the species cannot be isolated because they are in rapid equilibrium.  相似文献   
998.
Caged xenon has great potential in overcoming sensitivity limitations for solution‐state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed‐bed bioreactor working under perfusion with hyperpolarized‐xenon‐saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell‐associated versus unbound cages. We present MR images with 103‐fold sensitivity enhancement for cell‐internalized, dual‐mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications.  相似文献   
999.
1000.
Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6‐carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne “click” ligand, separation into sample containing precisely defined “click” ligand/particle ratios using reverse‐phase high performance liquid chromatography (RP‐HPLC), followed by reaction with excess azide‐functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using RP‐HPLC. These materials were characterized using 1H and 19F NMR spectroscopy, RP‐HPLC, UV/Vis and fluorescence spectroscopy, lifetime measurements, and MALDI.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号