首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1846篇
  免费   43篇
  国内免费   4篇
化学   1321篇
晶体学   11篇
力学   41篇
数学   294篇
物理学   226篇
  2023年   14篇
  2022年   19篇
  2021年   32篇
  2020年   22篇
  2019年   34篇
  2018年   22篇
  2017年   21篇
  2016年   41篇
  2015年   57篇
  2014年   73篇
  2013年   98篇
  2012年   113篇
  2011年   138篇
  2010年   82篇
  2009年   63篇
  2008年   115篇
  2007年   96篇
  2006年   84篇
  2005年   101篇
  2004年   73篇
  2003年   86篇
  2002年   73篇
  2001年   32篇
  2000年   32篇
  1999年   19篇
  1998年   17篇
  1997年   16篇
  1996年   26篇
  1995年   11篇
  1994年   18篇
  1993年   17篇
  1992年   20篇
  1990年   17篇
  1989年   14篇
  1988年   13篇
  1987年   10篇
  1986年   9篇
  1985年   10篇
  1984年   10篇
  1983年   9篇
  1982年   10篇
  1981年   5篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1977年   10篇
  1976年   8篇
  1975年   15篇
  1974年   6篇
  1973年   8篇
排序方式: 共有1893条查询结果,搜索用时 15 毫秒
51.
The objective of this work was to investigate the ability of supercritical (SC) ethanol conditions to attack preferentially the lignin fraction against the carbohydrate fraction and their effects on the product distribution among gases, light products, bio-oils, and chars. In this study, the conversion of each pinewood component was determined by the analysis of solid residues to quantify cellulose, hemicellulose, lignin, and char contents. It is shown that, by tuning the temperature, hemicellulose and lignin are already transformed in subcritical ethanol conditions, lignin being more reactive than hemicellulose. In contrast, native wood cellulose is recalcitrant to liquefaction in SC ethanol near the critical point (Tc = 241 °C and Pc = 61 bar), but 20% of native wood cellulose is converted in SC ethanol at 280 °C. Besides, the severity of the conditions, in terms of temperature and treatment time, does not significantly influence the yields of gases, light products, and bio-oils but strongly enhances char formation. Interestingly, the increase in SC ethanol density does not change the conversion of biomass components but has a marked effect on bio-oil yield and prevents char formation. The optimum fractionation conditions to convert the lignin component, while keeping unattacked the cellulose fraction with a minimum formation of char, are dense SC ethanol, at 250 °C for 1 h, in batch conditions. However, although lignin is more reactive than hemicellulose under these conditions, these fractions are converted, in a parallel way, to around 50% and 60%, respectively.  相似文献   
52.
To tackle the problems associated with membrane protein (MP) instability in detergent solutions, we designed a series of glycosyl‐substituted dicarboxylate detergents (DCODs) in which we optimized the polar head to clamp the membrane domain by including, on one side, two carboxyl groups that form salt bridges with basic residues abundant at the membrane–cytoplasm interface of MPs and, on the other side, a sugar to form hydrogen bonds. Upon extraction, the DCODs 8 b , 8 c , and 9 b preserved the ATPase function of BmrA, an ATP‐binding cassette pump, much more efficiently than reference or recently designed detergents. The DCODs 8 a , 8 b , 8 f , 9 a , and 9 b induced thermal shifts of 20 to 29 °C for BmrA and of 13 to 21 °C for the native version of the G‐protein‐coupled adenosine receptor A2AR. Compounds 8 f and 8 g improved the diffraction resolution of BmrA crystals from 6 to 4 Å. DCODs are therefore considered to be promising and powerful tools for the structural biology of MPs.  相似文献   
53.
The present study refers to a variety of reduced metal-oxide core-shell hybrids, which are unique with regard to their electronic structure, their geometry, and their formation. They contain spherical {Mo72Fe30} Keplerate-type shells encapsulating Keggin-type polyoxomolybdates based on very weak interactions. Studies on the encapsulation of molybdosilicate as well as on the earlier reported molybdophosphate, coupled with the use of several physical methods for the characterization led to unprecedented results (see title). Upon standing in air at room temperature, acidified aqueous solutions obtained by dissolving sodium molybdate, iron(II) chloride, acetic acid, and molybdosilicic acid led to the precipitation of monoclinic greenish crystals (1). A rhombohedral variant (2) has also been observed. Upon drying at room temperature, compound 3 with a layer structure was obtained from 1 in a solid-state reaction based on cross-linking of the shells. The compounds 1, 2, and 3 have been characterized by a combination of methods including single-crystal X-ray crystallography, magnetic studies, as well as IR, M?ssbauer, (resonance) Raman, and electronic absorption spectroscopy. In connection with detailed studies of the guest-free two-electron-reduced {Mo72Fe30}-type Keplerate (4) and of the previously reported molybdophosphate-based hybrids (including 31P NMR spectroscopy results), it is unambiguously proved that 1, 2, and 3 contain non-reduced Keggin ion cores and reduced {Mo72Fe30}-type shells. The results are discussed in terms of redox considerations (the shell as well as the core can be reduced) including those related to the reduction of "molybdates" by FeII being of interdisciplinary including catalytic interest (the MoVI/MoV and FeIII/FeII couples have very close redox potentials!), while also referring to the special formation of the hybrids based on chemical Darwinism.  相似文献   
54.
55.
Nitroxide‐mediated controlled/living free‐radical polymerization of methyl methacrylate initiated by the SG1‐based alkoxyamine BlocBuilder was successfully performed in bulk at 80–99 °C with the help of a very small amount of acrylonitrile (AN, 2.2–8.8 mol %) as a comonomer. Well‐defined PMMA‐rich P(MMA‐co‐AN) copolymers were prepared with the number‐average molar mass, Mn, in the 6.1–32 kg mol?1 range and polydispersity indexes as low as 1.24. Incorporation of AN in the copolymers was demonstrated by 1H and 13C NMR spectroscopy, and its effect on the chain thermal properties was evaluated by DSC and TGA analyses. Investigation of chain‐end functionalization by an alkoxyamine group was performed by means of 31P NMR spectroscopy and chain extensions from a P(MMA‐co‐AN)‐SG1 macroinitiator. It demonstrated the very high proportion of SG1‐terminated polymer chains, which opened the door to block copolymer synthesis with a high quality of control. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 34–47, 2010  相似文献   
56.
57.
ROMP and retro-acyclic diene metathesis (ADMET) were used for the synthesis of new functional polymers and functional oligomers, respectively. Purely exo and enantiomerically pure norbornene and 7-oxanorbornene derivatives were prepared using stereospecific synthesis, effective fractionation and high yield condensation reactions. Successful ROMPs of those monomers were performed using either the new carbenic Schrock’s or Grubb’s catalysts or in some cases a classical bicomponent catalyst. New functional polymers such as optically active poly(norbornene-2-carboxylic acid), reactive poly(norbornene-2-azlactone), and side-chain liquid crystal polyoxanorbornenes were fully characterized. On the other hand, successful depolymerizations of 1,4-polyisoprene and of epoxidized 1,4-polybutadiene via cross-metathesis with 4-octene were performed using a stabilized bicomponent catalyst and the Grubb’s catalyst, respectively. Conditions for the controlled synthesis of epoxidized oligobutadienes and of epoxydienic monomers via retro-ADMET were clearly defined.  相似文献   
58.
Ion/molecule reactions between O=P(OCH(3))(2)(+) phosphonium ions and six aromatic hydrocarbons (benzene, toluene, 1,2,4-trimethylbenzene, naphthalene, acenaphthylene and fluorene) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2)(+) phosphonium ions, formed by electron impact from neutral trimethyl phosphite, were found to react with aromatic hydrocarbons (ArHs) to give (i) an adduct [ArH, O=P(OCH(3))(2)](+) and (ii) for ArHs which have an ionization energy below or equal to 8.14 eV, a radical cation ArH(+ *) by charge transfer reaction. Collision-induced dissociation experiments, which produce fragment ions other than the O=P(OCH(3))(2)(+) ions, indicate that the adduct ions are covalent species. Isotope-labeled ArHs were used to elucidate fragmentation mechanisms. The charge transfer reactions were investigated using density functional theory at the B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G(d,p) level of theory. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2)(+) and benzene is described.  相似文献   
59.
This paper focuses on the classification or differentiation of RP-HPLC columns based on measured chromatographic properties. A chemometric study has been conducted on a published data set consisting of 85 RP-HPLC columns and on a data set consisting of 47 self-tested columns. Principal component analysis enables determination of the number of parameters necessary for a rational differentiation. The results show that reducing the number of parameters for such differentiation still allows classification of the columns just as a higher number did. It is shown that three test parameters produce a classification similar to that obtained with five parameters.  相似文献   
60.
The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs). Hydroxypropyl-β-cyclodextrin/α-pinene (HP-β-CD/α-pinene) inclusion complexes were prepared in aqueous solution, and the optimal solubilization of α-pinene occurred at HP-β-CD:α-pinene molar ratio of 7.5:1. The ethanol-injection method was applied to produce different formulations using saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids in combination with cholesterol. The size, the phospholipid and cholesterol incorporation rates, the encapsulation efficiency (EE), and the loading rate (LR) of α-pinene were determined, and the storage stability of liposomes was assessed. The results showed that α-pinene was efficiently entrapped in CLs and DCLs with high EE values. Moreover, Lipoid S100 CLs displayed the highest LR (22.9 ± 2.2%) of α-pinene compared to the other formulations. Both carrier systems HP-β-CD/α-pinene inclusion complex and Lipoid S100 CLs presented a gradual release of α-pinene. Furthermore, the DPPH radical scavenging activity of α-pinene was maintained upon encapsulation in Lipoid S100 CLs. Finally, it was found that all formulations were stable after three months of storage at 4 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号