首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   4篇
化学   113篇
力学   7篇
数学   11篇
物理学   12篇
  2023年   1篇
  2022年   9篇
  2021年   10篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   9篇
  2011年   16篇
  2010年   6篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   11篇
  2002年   6篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1992年   4篇
  1988年   2篇
  1980年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
101.
102.
Okanda FM  El Rassi Z 《Electrophoresis》2005,26(10):1988-1995
A neutral, nonpolar monolithic capillary column having a relatively strong electroosmotic flow (EOF) yet free of electrostatic interactions with charged solutes was developed for the reversed-phase capillary electrochromatography (RP-CEC) of neutral and charged species including peptides and proteins. The neutral nonpolar monolith is based on the in situ polymerization of pentaerythritol diacrylate monostearate (PEDAS) in a ternary porogenic solvent composed of cyclohexanol, ethylene glycol, and water. PEDAS plays the role of both the cross-linker and the ligand provider, generating a macroporous nonpolar monolith having C17 chains as the chromatographic ligands. Despite the fact that the neutral PEDAS monolith is devoid of fixed charges, the monolithic capillary columns exhibited a relatively strong EOF due to the ability of PEDAS to adsorb sufficient amounts of electrolyte ions from the mobile phase. The adsorbed ions imparted the neutral PEDAS monolith the zeta potential necessary to support the EOF required for mass transport across the monolithic column. The absence of fixed charges on the surface of the neutral PEDAS monolith and in turn the adsorption sites for electrostatic attraction of charged solutes allowed the rapid and efficient separations of proteins and peptides at pH 7.0, with an average plate number of 255,000 and 121,000 plates/m, respectively. To the best of our knowledge, this constitutes the first report on the separation of proteins at neutral pH by RP-CEC using a neutral monolithic column.  相似文献   
103.
Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 microm ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (> 2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160 000 plates/m, a value comparable to that obtained on columns packed with 3 microm C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio.  相似文献   
104.
105.
Bedair M  El Rassi Z 《Electrophoresis》2004,25(23-24):4110-4119
This review article summarizes the advances made over the last two years in polymeric monoliths for capillary electrochromatography (CEC). It covers the scientific literature in the period extending form the second half of 2002 until the end of first half of 2004. Currently, there is an increasing interest in monolithic stationary phases in CEC as an alternative to particulate packed capillary columns due in major part to the simplicity of the in situ preparation of monolithic stationary phases and the availability of a wide chemistry for surface ligands, which allow for tailoring the chromatographic sorbent needed for solving a given separation problem(s). The various approaches, formats, and chemistries used for the preparation of monolithic stationary phases are described.  相似文献   
106.
A series of non-porous, microspherical zirconia-based stationary phases with surface bound cationic functions have been introduced and evaluated in ion exchange chromatography of proteins and small acidic solutes. Different surface modification procedures were evaluated in the covalent attachment of weak, strong or hybrid anion exchange moieties on the surface of non-porous zirconia micropar-ticles. N,N-Diethylaminoethanol (DEAE) was used as the weak anion exchange ligand while glycidyltrimethylammonium chloride, which was covalently attached to poly(vinyl alcohol) layer (PVAN) on the zirconia surface, constituted the strong anion exchange moiety. Partially quaternarized poly(ethyleneimine) hydroxyethylated (PEI) was used as the hybrid type of anion exchange coating. DEAE-zir-conia microparticles acted as purely cation exchange stationary phases toward basic proteins indicating the predominance of electron donor-electron acceptor interaction (EDA) with surface exposed zirconium sites as well as cation exchange mechanism via electrostatic interaction with unreacted and unshielded hydroxyl groups. PVAN-zirconia stationary phase exhibited anion exchange chromatographic properties toward acidic proteins, but EDA interaction has stayed as an important contributor to solute retention despite the presence of a relatively thick layer of poly(vinyl alcohol) on the surface of the zirconia particles. The modification of zirconia surface with partially quaternarized PEI proved to be the most effective approach to minimize Lewis acidic metallic properties of the support. In fact, PEI-zirconia stationary phase operated as an anion exchanger toward acidic proteins and other small acidic solutes.  相似文献   
107.
Capillary zone electrophoresis of linear and branched oligosaccharides   总被引:5,自引:0,他引:5  
The electrophoretic behavior of derivatized linear and branched oligosaccharides from various sources was examined in capillary zone electrophoresis with polyether-coated fused-silica capillaries. Two UV-absorbing (also fluorescent) derivatizing agents (2-amino-pyridine and 6-aminoquinoline) were utilized for the electrophoresis and sensitive dtection of neutral oligosaccharides, e.g., N-acetylchitooligosaccharides, high-mannose glycans and xyloglucan oligosaccharides. The oligosaccharides labelled with 6-aminoquinoline yielded eight times higher signal than those tagged with 2-aminopyridine. Plots of logarithmic electrophoretic mobilities of labelled N-acetylchitooligosaccharides with 6-aminoquinoline or 2-aminopyridine versus the number of sugar residues in the homologous series yielded straight lines in the size range studied, the slopes of which were independent of the tagging functions. The slopes of these lines are referred to as the N-acetylglucosaminyl group mobility decrement. The oligosaccharides were better resolved in the presence of tetrabutylammonium bromide in the running electrolyte. Furthermore, the electrophoretic mobilities of branched oligosaccharides were indexed with respect to linear homooligosaccharides, an approach that may prove valuable in correlating and predicting the mobilities of complex oligosaccharides.  相似文献   
108.
This review article is aimed at assessing the recent progress made in affinity nano-LC and affinity CEC performed in capillaries and microchips. A variety of biospecific interactions is covered including lectin affinity, immunoaffinity, immobilized metal affinity, sugar-based affinity, protein A affinity, protein G affinity, aptamer affinity, enzyme affinity, and other miscellanea. ACE involving affinity interaction in free solution is not covered in this review article. Also, affinity-based separations involving chiral recognition are not the subject of this review article because they are the topic of a more specialized review article on chiral separations in this special issue. A total of 31 papers published in the period 1998-2006 have been discussed in this review article.  相似文献   
109.
Jmeian Y  El Rassi Z 《Electrophoresis》2008,29(13):2801-2811
In this investigation, an integrated microcolumn-based fluidic platform for the simultaneous depletion of high-abundance proteins and the subsequent on-line concentration/capturing of medium- and low-abundance proteins from human serum has been introduced. The platform consists of on-line coupling of tandem affinity micorcolumns to an RP microcolumn to achieve first the depletion of high-abundance proteins by the tandem affinity microcolumns followed by the concentration and capturing of medium- and low-abundance proteins by the RP microcolumn. The tandem affinity microcolumns are based on macroporous monoliths characterized by their relatively high permeability in pressure-driven flow while the RP microcolumn is packed with polymeric particles with an average particle diameter of 20 microm giving rise to a very little back pressure, thus allowing fast flow velocity across the coupled columns format and consequently short processing time of serum samples prior to analysis by 2-DE. The microcolumn-based fluidic platform was applied to serum samples from osteoarthritis (OA) donors before and after soy protein (SP) supplementation, and from healthy donors, and the resulting depleted serum samples from high-abundance proteins were profiled for protein expression by 2-DE. In general, the protein expression was lower in serum of the same OA patient after soy treatment than before soy treatment. Several proteins were down-regulated after soy treatment with transthyretin being the most affected by the SP supplementation. In addition, with respect to serum from healthy donors, the sera from OA patients showed difference in proteins expression.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号