首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
化学   27篇
力学   1篇
数学   11篇
物理学   8篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2019年   5篇
  2018年   1篇
  2017年   7篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   7篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   2篇
  1997年   2篇
  1996年   1篇
排序方式: 共有47条查询结果,搜索用时 281 毫秒
11.
The interaction between Cd2+ and Pb2+ ions and 18-crown-6 (18C6), 1,10-diaza-18-crown-6 (C22) and 1,7-diaza-15-crown-5 (C21) were studied in water solvent at 25, 35, 45 and 55° using square wave voltammetric technique. The stoichiometry and stability of the complexes were determined by monitoring the shift in half-wave or peak potential of the polarographic waves of metal against the ligand concentration. Thermodynamic parameters such as G, H and S were obtained by using a polarographic double wall cell in which the temperature could be fixed to ±0.1°C. The results of all experiments show 1 : 1 complexes, but in addition to 1 : 1 ratio, a 2 : 1 ratio of ligand to cation is also obtained for C22–Pb2+ complex. The selectivity order for 18C6 and C22 is Pb2+ > Cd2+. The thermodynamic data G, H and S values show that the complexes are stabilized by both the enthalpy and entropy terms, but C22–Pb2+ complex is stabilized by only enthalpy term.  相似文献   
12.
Carbon tetrachloride (CCL4) induces oxidative stress by free radical toxicities, inflammation, and neurotoxicity. Quercetin (Q), on the other hand, has a role as anti-inflammatory, antioxidant, antibacterial, and free radical-scavenging. This study explored protection given by quercetin against CCL4 induced neurotoxicity in rats at given concentrations. Male Wistar rats were divided into four groups Group C: control group; Group CCL4: given a single oral dose of 1 mL/kg bw CCL4; Group Q: given a single i.p injection of 100 mg/kg bw quercetin; and Group Q + CCL4: given a single i.p injection of 100 mg/kg bw quercetin before two hours of a single oral dose of 1 mL/kg bw CCL4. The results from brain-to-body weight ratio, morphology, lipid peroxidation, brain urea, ascorbic acid, reduced glutathione, sodium, and enzyme alterations (aspartate aminotransferase (AST), alanine aminotransferase (ALT), catalase, and superoxide dismutase) suggested alterations by CCL4 and a significant reversal of these parameters by quercetin. In silico analysis of quercetin with various proteins was conducted to understand the molecular mechanism of its protection. The results identified by BzScore4 D showed moderate binding between quercetin and the following receptors: glucocorticoids, estrogen beta, and androgens and weak binding between quercetin and the following proteins: estrogen alpha, Peroxisome proliferator-activated receptors (PPARγ), Herg k+ channel, Liver x, mineralocorticoid, progesterone, Thyroid α, and Thyroid β. Three-dimensional/four-dimensional visualization of binding modes of quercetin with glucocorticoids, estrogen beta, and androgen receptors was performed. Based on the results, a possible mechanism is hypothesized for quercetin protection against CCL4 toxicity in the rat brain.  相似文献   
13.
In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80 \(^{\circ }\) . So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90 \(^{\circ }\) , the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.  相似文献   
14.
The nano-sized coupled oxides ZnO/SnO2 thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli (E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO2 (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO2-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.  相似文献   
15.
In this paper we establish a sharp result concerning integral mean estimates for self-reciprocal polynomials.  相似文献   
16.
In this investigation, for the first time, we used Fragaria ananassa (strawberry) leaf extract as a source of natural reducing, capping or stabilizing agents to develop an eco-friendly, cost-effective and safe process for the biosynthesis of metal-based nanoparticles including silver, copper, iron, zinc and magnesium oxide. Calcinated and non-calcinated zinc oxide nanoparticles also synthesized during a method different from our previous study. To confirm the successful formation of nanoparticles, different characterization techniques applied. UV-Vis spectroscopy, X-ray Diffraction (XRD) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), Photon Cross-Correlation Spectroscopy (PCCS) and Fourier Transformed Infrared Spectroscopy (FT-IR) were used to study the unique structure and properties of biosynthesized nanoparticles. The results show the successful formation of metal-based particles in the range of nanometer, confirmed by different characterization techniques. Finally, the presented approach has been demonstrated to be effective in the biosynthesis of metal and metal oxide nanoparticles.  相似文献   
17.
Let ${(R,\mathfrak{m})}$ be a local ring, and let C be a semidualizing R-module. In this paper, we are concerned with the C-injective and G C -injective dimensions of certain local cohomology modules of R. Firstly, the injective dimension of C and the above quantities are compared. Secondly, as an application of the above comparisons, a characterization of a dualizing module of R is given. Finally, it is shown that if R is Cohen-Macaulay of dimension d such that ${\rm H}_{\mathfrak{m}}^{d}(C)$ is C-injective, then R is Gorenstein. This is an answer to a question which was recently raised.  相似文献   
18.
Poly (glycerol sebacate) (PGS) is a thermoset biodegradable elastomer considered as a promising candidate material for nerve applications. However, PGS synthesis is very time and energy consuming. In this study, the PGS pre‐polymer (pPGS) was synthesized using three synthesis times of 3, 5, and 7 hours at 170°C. Fourier transform infrared (FTIR), nuclear magnetic resonance spectroscopy, X‐ray diffraction analysis, and differential scanning calorimetry thermogram were utilized to study the pPGS behavior. Poly (vinyl alcohol) was used as a carrier to fabricate aligned poly (vinyl alcohol)‐poly (glycerol sebacate) (PVA‐PGS) fibers with various ratios (60:40, 50:50, and 40:60) using electrospinning and crosslinked through the thermal crosslinking method. Morphology of the fibers was studied before and after crosslinking using scanning electron microscopy (SEM). FTIR, mechanical properties in the dry and wet state, water contact angle, in vitro degradation, and water uptake behavior of crosslinked scaffolds were also investigated. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, SEM analysis, and 4′, 6‐diamidino‐2‐phenylindole (DAPI) staining were utilized to determine the biocompatibility of scaffolds. The results show the synthesized pPGS in 3 hours at 170°C is the optimized sample in the terms of chemical reaction. All scaffolds have bead‐free and a uniform fiber diameter. The Young's modulus of crosslinked PVA‐PGS (50:50 and 40:60) fibers is shown to be in the expected range for nerve applications. The cell culture studies reveal PVA‐PGS (50:50 and 40:60) fibers could lead to better cell adhesion and proliferation. The results suggest that PVA‐PGS (50:50 and 40:60) is a suitable and promising biodegradable material in the fabrication of scaffolds for nerve regeneration.  相似文献   
19.
Assaying for enzymatic activity is a persistent bottleneck in biocatalyst and drug development. Existing high‐throughput assays for enzyme activity tend to be applicable only to a narrow range of biochemical transformations, whereas universal enzyme characterization methods usually require chromatography to determine substrate turnover, greatly diminishing throughput. We present an enzyme activity assay that allows the high‐throughput mass‐spectrometric detection of enzyme activity in complex matrices without the need for a chromatographic step. This technology, which we call probing enzymes with click‐assisted NIMS (PECAN), can detect the activity of medically and biocatalytically significant cytochrome P450s in cell lysate, microsomes, and bacteria. Using this approach, a cytochrome P450BM3 mutant library was successfully screened for the ability to catalyze the oxidation of the sesquiterpene valencene.  相似文献   
20.
The interaction between erlotinib (ERL) and bovine serum albumin (BSA) was studied in the presence of quercetin (QUR), a flavonoid with antioxidant properties. Ligands bind to the transport protein BSA resulting in competition between different ligands and displacing a bound ligand, resulting in higher plasma concentrations. Therefore, various spectroscopic experiments were conducted in addition to in silico studies to evaluate the interaction behavior of the BSA-ERL system in the presence and absence of QUR. The quenching curve and binding constants values suggest competition between QUR and ERL to bind to BSA. The binding constant for the BSA-ERL system decreased from 2.07 × 104 to 0.02 × 102 in the presence of QUR. The interaction of ERL with BSA at Site II is ruled out based on the site marker studies. The suggested Site on BSA for interaction with ERL is Site I. Stability of the BSA-ERL system was established with molecular dynamic simulation studies for both Site I and Site III interaction. In addition, the analysis can significantly help evaluate the effect of various quercetin-containing foods and supplements during the ERL-treatment regimen. In vitro binding evaluation provides a cheaper alternative approach to investigate ligand-protein interaction before clinical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号