首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149196篇
  免费   7035篇
  国内免费   4815篇
化学   66698篇
晶体学   1909篇
力学   10555篇
综合类   287篇
数学   39338篇
物理学   42259篇
  2023年   838篇
  2022年   1562篇
  2021年   1700篇
  2020年   1786篇
  2019年   1725篇
  2018年   11812篇
  2017年   11514篇
  2016年   8314篇
  2015年   2958篇
  2014年   3096篇
  2013年   4514篇
  2012年   8306篇
  2011年   15346篇
  2010年   9051篇
  2009年   9392篇
  2008年   10352篇
  2007年   12192篇
  2006年   3645篇
  2005年   4060篇
  2004年   3888篇
  2003年   3993篇
  2002年   2914篇
  2001年   2351篇
  2000年   2065篇
  1999年   1735篇
  1998年   1504篇
  1997年   1379篇
  1996年   1375篇
  1995年   1189篇
  1994年   1041篇
  1993年   903篇
  1992年   930篇
  1991年   849篇
  1990年   803篇
  1989年   710篇
  1988年   705篇
  1987年   653篇
  1986年   583篇
  1985年   632篇
  1984年   613篇
  1983年   449篇
  1982年   483篇
  1981年   449篇
  1980年   380篇
  1979年   454篇
  1978年   412篇
  1977年   414篇
  1976年   407篇
  1975年   358篇
  1973年   364篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
Summary A 2D time-domain Boundary Element Method (BEM) is applied to solve the problem of transient scattering of plane waves by an inclusion with a unilateral smooth contact interface. The incident wave is assumed strong enough so that localized separations take place along the interface. The present problem is indeed a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (separation and contact regions). In order to determine the unknown intervals, an iterative technique is developed. As an example, we consider the scattering of plane waves by the cross section of a circular cylinder embedded in an infinite solid. Numerical results for the near field solutions are presented. The distortion of the response waves and the variation of the interface states are discussed. The financial support by the China National Natural Science Foundation under Grant No. 19872001 and No. 59878004 is gratefully acknowledged. The second author is also grateful to the support of the National Science Fund for Distinguished Young Scholars under Grant No. 10025211.  相似文献   
53.
MgO films were grown on (0 0 1) yttria-stabilized zirconia (YSZ) substrates by molecular beam epitaxy (MBE). The crystalline structures of these films were investigated using X-ray diffraction and transmission electron microscopy. Growth temperature was varied from 350 to 550 °C, with crystalline quality being improved at higher temperatures. The MgO films had a domain structure: (1 1 1)[1 1 2¯]MgO(0 0 1)[1 0 0]YSZ with four twin variants related by a 90° in-plane rotation about the [1 1 1]MgO axis. The observed epitaxial orientation was compared to previous reports of films grown by pulsed laser deposition and sputtering and explained as resulting in the lowest interface energy.  相似文献   
54.
The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gases.  相似文献   
55.
It is shown that time-dependent temperatures in a transient, conductive system can be approximately modeled by a fractional-order differential equation, the order of which depends on the Biot number. This approximation is particularly suitable for complex shapes for which a first-principles approach is too difficult or computationally time-consuming. Analytical solutions of these equations can be written in terms of the Mittag-Leffler function. The approximation is especially useful if a suitable fractional-order controller is to be designed for the system.  相似文献   
56.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   
57.
This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steelfiber reinforced concrete, sandstone and crystal-polymer composite. The deformation fields of the composite materials resulted from stress localization were obtained by the correlation computation of the surface images with loading steps and thus the related damage prediction and fracture parameters were evaluated. The correlation searching could be performed either directly based on the gray levels of the digital images or from the wavelet transform (WT) coefficients of the transform spectrum. The latter was developed by the authors and showed higher resolution and sensitivity to the singularity detection. Because the displacement components came from the rough surfaces of the composite materials without any coats of gratings or fringes of optical interferometry, both surface profiles and the deformation fields of the composites were visualized which was helpful to compare each other to analyze the damage of those heterogeneous materials. The project supported by the National Natural Science Foundation of China (10125211 and 10072002), the Scientific Committee of Yunnan Province for the Program of Steel Fiber Reinforced Concrete, and the Institute of Chemical Materials, CAEP at Mianyang  相似文献   
58.
59.
Results obtained in determining experimentally the mean volume-surface drop diameter of the dispersed phase in a multistage bubble extractor are presented.  相似文献   
60.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号