The problem of steady, laminar, mixed convection boundary-layer flow over an isothermal vertical wedge embedded in a porous
medium saturated with a nanofluid is studied, in the presence of thermal radiation. The model used for the nanofluid incorporates
the effects of Brownian motion and thermophoresis with Rosseland diffusion approximation. The wedge surface is maintained
at a constant temperature and a constant nanoparticle volume fraction. The resulting governing equations are non-dimensionalized
and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results
in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters
is made, and a representative set of numerical results for the velocity, temperature, and volume fraction, the local Nusselt
and Sherwood numbers are presented graphically. The salient features of the results are analyzed and discussed. 相似文献
An analysis is performed to study unsteady free convective boundary layer flow of a nanofluid over a vertical cylinder. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing equations are formulated and a numerical solution is obtained by using an explicit finite-difference scheme of the Crank-Nicolson type. The solutions at each time step have been found to reach the steady state solution properly. Numerical results for the steady-state velocity, temperature and nanoparticles volume fraction profiles as well as the axial distributions and the time histories of the skin-friction coefficient, Nusselt number and the Sherwood number are presented graphically and discussed. 相似文献
The problem of double-diffusive convection in inclined finned triangular porous enclosures for various thermal and concentration
boundary conditions and in the presence of heat source or sink was studied. The finite difference method was employed to solve
the dimensionless governing equations of the problem. The effects of the governing parameters, namely the dimensionless time
parameter, the inclination angle, Darcy number, heat generation/absorption parameter, the buoyancy parameter and the Rayleigh
number on the streamlines, temperature and concentration contours as well as selected velocity component in the x-direction, local and average Nusselt numbers and local and average Sherwood number at the heated and concentrated wall for
various values of the aspect ratio and the position of the fin were considered. The present results are validated by favorable
comparisons with previously published results. All the results of the problem were presented in graphical and tabular forms
and discussed. 相似文献
The topic is of paramount importance. Heating, cooling, or solar air ducts are used in several sectors and in very diverse fields. The improvement in their performance has been and is still of major concern to theorists and practitioners. The issue of exchanging heat between fluid and the heated surfaces within a smooth air channel relies mainly on the value of the heat transfer coefficient. This coefficient is a mine of factors that affect the heat exchange between working fluid and heated walls. Therefore, it is an ambitious attempt to work on such a topic. Obstacles, such as staggered or in-line, transverse, or longitudinal baffles, fins, or ribs have long been utilized in several thermal systems like shell-and-tube heat exchangers with segmental baffles, compact heat exchangers, flat-plate solar air collectors, microelectronics, and various other industrial applications, because of their high thermal loads and reduced structural parameters. The channels, through which the cooling or heating fluid is supplied, are generally mounted with several obstacles in order to increase the cooling or heating level. This configuration is mostly used in designing heat exchangers and solar air collectors. Through this contribution, we present a comprehensive literature review of the various heat transfer strategies used to improve the performance of smooth air channels (SACs). Various research works were made on (SACs) either numerical or experimental in order to improve their performance. Different models and configurations of obstacles are reviewed and discussed, including attached, semiattached, or detached; parallel, orthogonal or inclined; solid, perforated, or porous; and simple, corrugated, or shaped, of various sizes, positions, attack angles, perforations, porosities, arrangements, and orientations. In these studies, the obstacles are principally used to change the direction of the flow field, to modify the distribution of the local heat transfer coefficient, and also to increase the turbulence levels, thus resulting in larger heat transfer between the fluid and the heated walls.
A numerical study of mixed convection in a vertical channel filled with a porous medium including the effect of inertial forces
is studied by taking into account the effect of viscous and Darcy dissipations. The flow is modeled using the Brinkman–Forchheimer-extended
Darcy equations. The two boundaries are considered as isothermal–isothermal, isoflux–isothermal and isothermal–isoflux for
the left and right walls of the channel and kept either at equal or at different temperatures. The governing equations are
solved numerically by finite difference method with Southwell–Over–Relaxation technique for extended Darcy model and analytically
using perturbation series method for Darcian model. The velocity and temperature fields are obtained for various porous parameter,
inertia effect, product of Brinkman number and Grashof number and the ratio of Grashof number and Reynolds number for equal
and different wall temperatures. Nusselt number at the walls is also determined for three types of thermal boundary conditions.
The viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of
upward flow. The Darcy and inertial drag terms suppress the flow. It is found that analytical and numerical solutions agree
very well for the Darcian model.
An erratum to this article is available at . 相似文献
The mixed convection flow over a continuous moving vertical slender cylinder under the combined buoyancy effect of thermal
and mass diffusion has been studied. Both uniform wall temperature (concentration) and uniform heat (mass) flux cases are
included in the analysis. The problem is formulated in such a manner that when the ratio λ(= uw/(uw + u∞), where uw and u∞ are the wall and free stream velocities, is zero, the problem reduces to the flow over a stationary cylinder, and when λ = 1
it reduces to the flow over a moving cylinder in an ambient fluid. The partial differential equations governing the flow have
been solved numerically using an implicit finite-difference scheme. We have also obtained the solution using a perturbation
technique with Shanks transformation. This transformation has been used to increase the range of the validity of the solution.
For some particular cases closed form solutions are obtained. The surface skin friction, heat transfer and mass transfer increase
with the buoyancy forces. The buoyancy forces cause considerable overshoot in the velocity profiles. The Prandtl number and
the Schmidt number strongly affect the surface heat transfer and the mass transfer, respectively. The surface skin friction
decreases as the relative velocity between the surface and free stream decreases.
Received on 17 May 1999 相似文献
Journal of Thermal Analysis and Calorimetry - The present work is a computational investigation of a periodically fully developed nanofluid transport through a wavy module. The governing equations... 相似文献
The present work was performed to investigate the phenolic composition of P. lentiscus L. distilled leaves (PDL) and examine its potential against certain key enzymes related to skin aging. High-pressure liquid chromatography coupled to mass spectrometry (HPLC-MS) and various separation procedures combined with nuclear magnetic resonance (NMR) and MS analysis were performed to isolate and identify compounds present in the ethyl acetate extract (EAE) of PDL. A high amount of flavonol glycoside was detected in EAE. Indeed, quercetin-3-O-rhamnoside (FC), myricetin-3-O-rhamnoside (FM2), and kaempferol-3-O-rhamnoside (FB2) were isolated from EAE, and are present in high quantities of 10.47 ± 0.26, 12.17 ± 0.74, and 4.53 ± 0.59 mg/g dry weight, respectively. A transdermal diffusion study was carried out to determine the EAE-molecules that may transmit the cutaneous barrier and showed that FM2 transmits the membrane barrier with a high amount followed by FC. EAE, FM2, and FC were tested against tyrosinase and elastase enzymes. Moreover, intracellular tyrosinase inhibition and cytotoxicity on skin melanoma cells (B16) were evaluated. The results indicated that EAE, FC, and FM2 have important inhibitory activities compared to the well-known standards, at non-cytotoxic concentrations. Therefore, they could be excellent agents for treating skin pigmentation and elasticity problems. 相似文献
In this paper, the melting process of a PCM inside an inclined compound enclosure partially filled with a porous medium is theoretically addressed using a novel deformed mesh method. The sub-domain area of the compound enclosure is made of a porous layer and clear region. The right wall of the enclosure is adjacent to the clear region and is subject to a constant temperature of Tc. The left wall, which is connected to the porous layer, is thick and thermally conductive. The thick wall is partially subject to the hot temperature of Th. The remaining borders of the enclosure are well insulated. The governing equations for flow and heat transfer, including the phase change effects and conjugate heat transfer at the thick wall, are introduced and transformed into a non-dimensional form. A deformed grid method is utilized to track the phase change front in the solid and liquid regions. The melting front movement is controlled by the Stefan condition. The finite element method, along with Arbitrary Eulerian–Lagrangian (ALE) moving grid technique, is employed to solve the non-dimensional governing equations. The modeling approach and the accuracy of the utilized numerical approach are verified by comparison of the results with several experimental and numerical studies, available in the literature. The effect of conjugate wall thickness, inclination angle, and the porous layer thickness on the phase change heat transfer of PCM is investigated. The outcomes show that the rates of melting and heat transfer are enhanced as the thickness of the porous layer increases. The melting rate is the highest when the inclination angle of the enclosure is 45°. An increase in the wall thickness improves the melting rate.
An analysis is developed to study the unsteady mixed convection flow over a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field. The coupled nonlinear partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The local skin friction coefficients in the tangential and azimuthal directions and the local Nusselt number increase with the time when the angular velocity of the cone increases, but the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. The magnetic field reduces the skin friction coefficient in the tangential direction and also the Nusselt number, but it increases the skin friction coefficient in the azimuthal direction. The skin friction coefficients and the Nusselt number increase with the buoyancy force. 相似文献