首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20287篇
  免费   3341篇
  国内免费   2393篇
化学   14047篇
晶体学   181篇
力学   1222篇
综合类   131篇
数学   2858篇
物理学   7582篇
  2024年   93篇
  2023年   448篇
  2022年   678篇
  2021年   736篇
  2020年   880篇
  2019年   812篇
  2018年   719篇
  2017年   675篇
  2016年   1002篇
  2015年   987篇
  2014年   1121篇
  2013年   1490篇
  2012年   1719篇
  2011年   1793篇
  2010年   1266篇
  2009年   1135篇
  2008年   1280篇
  2007年   1129篇
  2006年   1011篇
  2005年   910篇
  2004年   725篇
  2003年   630篇
  2002年   694篇
  2001年   548篇
  2000年   454篇
  1999年   444篇
  1998年   352篇
  1997年   329篇
  1996年   346篇
  1995年   304篇
  1994年   237篇
  1993年   167篇
  1992年   170篇
  1991年   165篇
  1990年   126篇
  1989年   101篇
  1988年   56篇
  1987年   60篇
  1986年   73篇
  1985年   51篇
  1984年   33篇
  1983年   27篇
  1982年   17篇
  1981年   12篇
  1980年   4篇
  1975年   2篇
  1971年   1篇
  1969年   1篇
  1959年   1篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
3D perovskite CsPbBr3 has recently taken a blooming position for optoelectronic applications. However, due to the lack of natural anisotropy of optical attributes, it is a great challenge to fulfil polarization-sensitive photodetection. Here, for the first time, we exploited dimensionality reduction of CsPbBr3 to tailor a 2D-multilayered hybrid perovskite, (TRA)2CsPb2Br7 ( 1 , in which TRA is (carboxy)cyclohexylmethylammonium), serving as a potential polarized-light detecting candidate. Its unique quantum-confined 2D structure results in intrinsic anisotropy of electrical conductivity, optical absorbance, and polarization-dependent responses. Particularly, it exhibits remarkable dichroism with the photocurrent ratio (Ipc/Ipa) of ≈2.1, being much higher than that of the isotropic CsPbBr3 crystal and reported CH3NH3PbI3 nanowire (≈1.3), which reveals its great potentials for polarization-sensitive photodetection. Further, crystal-based detectors of 1 show fascinating responses to the polarized light, including high detectivity (>1010 Jones), fast responding time (≈300 μs), and sizeable on/off current ratios (>104). To our best knowledge, this is the first study on 2D Cs-based hybrid perovskite exhibiting strong polarization-sensitivity. The work highlights an effective pathway to explore new polarization sensitive candidates for hybrid perovskites and promotes their future electronic applications.  相似文献   
992.
The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM-pBrA)2(NCS)2] exhibits, on the contrary, an increase of the unit-cell volume from HS to LS. This counter-intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single-crystal and powder X-ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light-induced HS state obtained through the Light-Induced Excited Spin-State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.  相似文献   
993.
A non-oxidant and metal-free strategy for synthesizing iso-coumarin by using a continuous electrochemical microreactor to initiate an oxidative cyclization reaction of o-(1-alkynyl) benzoate and radicals. This efficient and clean continuous electrosynthesis method not only avoids the complicated gas protection operation and production of by-products in the batch processes, but also help to overcome the difficulty that batch metal catalysis and electrocatalysis are difficult to scale up, and has the potential for pilot-scale experiment.  相似文献   
994.
995.
In this study, ZSM-5, which is a Mobil-type five-type zeolite with well-defined crystal morphology, is successfully synthesized via a seed-assisted, liquid-free method that uses iron ore tailings as a silica source. The ZSM-5 crystallization kinetics at 423, 433, and 443 K and different synthesis times are investigated to identify the nucleation and crystallization mechanisms of the synthesized ZSM-5 zeolites, and results suggest that the crystallization kinetics follow a Kolmogorov-Johnson-Mehl-Avrami-type behavior. The activation energies for the induction and transition periods are 112.38 and 58.35 kJ mol−1, respectively. Furthermore, the Avrami exponent indicates three-dimensional crystal growth from both sporadic and instantaneous nucleation mechanisms. A comparison of our results with previous reports of the ZSM-5 crystallization mechanism demonstrates that the seed crystals play a significant role in nucleation and crystal growth. Finally, seed surface crystallization and new nuclei crystallization dual mechanism has been proposed to describe the crystallization process of ZSM-5.  相似文献   
996.
997.
998.
Cationic compounds often serve as antibacterial materials for a wide range of applications. However, the relationship of topology−antibacterial activity has been rarely revealed. Herein, three cationic polythioethers (CPTEs) with hyperbranched topologies are well designed and facilely synthesized via an all-click chemistry strategy (including thiol-ene and epoxy-amine additions). These as-prepared CPTEs were found to exhibited outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations against E. coli of 7.3, 14.6, and 14.6 μg ml−1, and against S. aureus of 14.6, 29.2, and 29.2 μg ml−1, respectively. The antibacterial activity is coincident with their degree of branching (DB, their DB values of 0.81, 0.48, and 0.27), which is mainly attributed to the inherent three-dimensional structure. The present strategy reveals the relationship of polymer topology and antibacterial activity, providing a novel possibility for designing and/or synthesis of high-efficiency antibacterial agents.  相似文献   
999.
A cobalt(II)-catalyzed [4+2] annulation of picolinamides with alkynes via C−H bond activation has been developed. The operationally simple annulation reaction allows for the synthesis of acyl-substituted 1H-benzoquinoline bearing multiple aromatic rings (up to 96 % yield) without co-oxidant or other oxidation factors under mild conditions. Several control experiments were carried out. This practical [4+2] annulation provides an efficient route to access highly functionalized compounds.  相似文献   
1000.
Searching for new anti-poisoning Pt-based catalysts with enhanced activity for alcohol oxidation is the key in direct alcohol fuel cells (DAFCs). However, in the traditional strategy for designing bimetallic or multimetallic alloy is still difficult to achieve a satisfactory heterogeneous electrocatalyst because the activity often depends on only the surface atoms. Herein, we fabricate the multicomponent active sites by creating a sulfide structure on 1D PtNiCo trimetallic nanowires (NWs), to give a PtNiCo/NiCoS interface NWs (IFNWs). Owing to the presence of sulfide interfaces, the PtNiCo/NiCoS IFNWs enable an impressive methanol/ethanol oxidation reaction (MOR/EOR) performance and excellent anti-CO poisoning tolerance. They have the MOR and EOR mass activities of 2.25 Amg-1Pt and 1.62 Amg-1Pt, around 1.26, 3.21 and 1.46, 2.96 times higher than those of PtNiCo NWs and commercial Pt/C, respectively. CO-stripping and XPS measurements further demonstrate that the new interfacial structure and optimal bonding of Pt−CO can result in accelerating the removal of surface adsorbed carbonaceous intermediates. Moreover, such a unique structure has also demonstrated a much-improved ability for the electrochemical detection of some important molecules (H2O2 and NH2NH2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号