首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   3篇
化学   126篇
晶体学   1篇
力学   6篇
数学   16篇
物理学   15篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   11篇
  2012年   6篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   15篇
  2006年   16篇
  2005年   8篇
  2004年   10篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1973年   1篇
  1972年   2篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1939年   1篇
排序方式: 共有164条查询结果,搜索用时 31 毫秒
41.
The mechanism of olefin substitution at palladium(0) has been studied, and the results provide unique insights into the fundamental reactivity of electron-rich late transition metals. A systematic series of bathocuproine-palladium(0) complexes bearing trans-beta-nitrostyrene ligands (ns(X) = X-C(6)H(4)CH=CHNO(2); X = OCH(3), CH(3), H, Br, CF(3)), (bc)Pd(0)ns(X) (3(X)), was prepared and characterized, and olefin-substitution reactions of these complexes were found to proceed by an associative mechanism. In cross-reactions between (bc)Pd(ns(CH)()3) and ns(X) (X = OCH(3), H, Br, CF(3)), more-electron-deficient olefins react more rapidly (relative rate: ns(CF)()3 > ns(Br) > ns(H) > ns(OCH)()3). Density functional theory calculations of model alkene-substitution reactions at a diimine-palladium(0) center reveal that the palladium center reacts as a nucleophile via attack of a metal-based lone pair on the empty pi orbital of the incoming olefin. This orbital picture contrasts that of traditional ligand-substitution reactions, in which the incoming ligand donates electron density into an acceptor orbital on the metal. On the basis of these results, olefin substitution at palladium(0) is classified as an "inverse-electron-demand" ligand-substitution reaction.  相似文献   
42.
Mesoscopically ordered patterns were obtained when polymer solutions were applied to tilted substrates and evaporated immediately under ambient conditions in a slow air current. The patterns were studied with optical, scanning electron, and atomic force microscopy. Shadowgraph visualization of the patterning was carried out, and visualization of the flow with an ink tracer was performed. Restrained and nonrestrained flows of the polymer solution gave rise to very similar patterning. The formation of the patterns on different solid substrates, including substrates wetted with silicon oil, was investigated. The concentration of the polymer solutions exerted an influence on the characteristic dimension of mesoscaled cells. A physical mechanism of the patterning is proposed. The mechanism is based on the mass transport instability occurring under the intensive evaporation of the solvent. The model satisfactorily explains the experimental findings.  相似文献   
43.
44.
The dynamic mechanical properties of four aromatic polyesters were measured at temperatures in the 78–540°K region at 103–104 cps. The polymers studied were: poly(1,3 phenylene isophthalate), poly(1,4 phenylene terephthalate), poly(4,4′ diphenylene isophthalate), and poly(4,4′ diphenylene terephthalate). All four polymers had β loss peaks at about 280°K. Distinct β* mechanical processes were found for the two terephthalate esters. Broad-line nuclear magnetic resonance measurements were carried out in the 150–440°K temperature range on the four polyesters mentioned above in addition to poly(4,4′ diphenylene 4,4′ biphenyl dicarboxylate). A change in NMR second moment takes place in the 190–330°K region, the magnitude of which is dependent on the polymer structure. The results are compared with those found for a series of aromatic polyamides and are discussed in terms of possible motional processes.  相似文献   
45.
Polyethylenimine (PEI) forms a copper chelate with a N/Cu ratio of about 5 and with extinction coefficients of about 175 at 6350 A. and 4250 at 2694 A. Solutions of PEI-copper chelate obey Lambert's and Beer's laws and show increased optical density in the presence of chloride ion. Above pH 4.25, hydrogen ion has little effect. A comparison with the copper chelate of polyvinylamine suggests that PEI has a highly, branched structure. Analysis of PEI via its copper chelate is described.  相似文献   
46.
We consider the solution of a linear second-order parabolic equation with one spatial variable and a zero right side. We prove that since the solution decreases quite rapidly in the spatial variable as it approaches a particular point, it vanishes on the part of the characteristic joining the point to the boundary of the region in which the solution is defined.Translated from Matematicheskie Zametki, Vol. 12, No. 3, pp. 257–262, September, 1972.  相似文献   
47.
We have developed a model for understanding the shapes of transition metal complexes containing multiple bonds. This model, which focuses on Lewis-like structures and the balance of forces arising from sigma- and pi-bond frameworks, provides a simple method for predicting the structures of transition metal complexes with pi-bonds. Potential energy expressions suitable for implementation in molecular mechanics computations have been derived from consideration of orbital hybridizations and coded into our UFF2-based molecular mechanics program, VALBOND. The VALBOND method correctly predicts the structures for a wide variety of experimentally and computationally characterized compounds containing metal-ligand multiple bonds.  相似文献   
48.
Metallocene-catalyzed polymerization of 1-alkenes offers fine control of critical polymer attributes such as molecular weight, polydispersity, tacticity, and comonomer incorporation. Enormous effort has been expended on the synthesis and discovery of new catalysts and activators, but elementary aspects of the catalytic processes remain unclear. For example, it is unclear how the catalyst is distributed among active and dormant sites and how this distribution influences the order in monomer for the propagation rates, for which widely varying values are reported. Similarly, although empirical relationships between average molecular weights and monomer have been established for many systems, the underlying mechanisms of chain termination are unclear. Another area of intense interest concerns the role of ion-pairing in controlling the activity and termination mechanisms of metallocene-catalyzed polymerizations. Herein we report the application of quenched-flow kinetics, active site counting, polymer microstructure analysis, and molecular weight distribution analysis to the determination of fundamental rate laws for initiation, propagation, and termination for the polymerization of 1-hexene in toluene solution as catalyzed by the contact ion-pair, [rac-(C(2)H(4)(1-indenyl)(2))ZrMe][MeB(C(6)F(5))(3)] (1) over the temperature range of -10 to 50 degrees C. Highly isotactic (>99% mmmm) poly-1-hexene is produced with no apparent enchained regioerrors. Initiation and propagation processes are first order in the concentrations of 1-hexene and 1 but independent of excess borane or the addition of the contact ion-pair [PhNMe(3)][MeB(C(6)F(5))(3)]. Active site counting and the reaction kinetics provide no evidence of catalyst accumulation in dormant or inactive sites. Initiation is slower than propagation by a factor of 70. The principal termination process is the formation of unsaturates of two types: vinylidene end groups that arise from termination after a 1,2 insertion and vinylene end groups that follow 2,1 insertions. The rate law for the former termination process is independent of the 1-hexene concentration, whereas the latter is first order. Analysis of (13)C-labeled polymer provides support for a mechanism of vinylene end group formation that is not chain transfer to monomer. Deterministic modeling of the molecular weight distributions using the fundamental rate laws and kinetic constants demonstrates the robustness of the kinetic analysis. Comparisons of insertion frequencies with estimated limits on the rates of ion-pair symmetrization obtained by NMR suggest that ion-pair separation prior to insertion is not required, but the analysis requires assumptions that cannot be validated.  相似文献   
49.
50.
The equations governing mechanics and electrostatics are formulated for a system in which the material deformations and electrostatic polarizations are arbitrary. A mechanical/electrostatic energy balance is formulated for this situation in terms of the electric enthalpy, in which the electric potential and the electric field are the independent variables, and charge and electric displacement, respectively, are the conjugate thermodynamic forces. This energy statement is presented in the form of a principle of virtual work (PVW), in which external virtual work is equated to internal virtual work. The resulting expression involves an internal material virtual work in which (1) material polarization is work-conjugate to increments of electric field, and (2) a combination of Cauchy stress, Maxwell stress and a product of polarization and electric field is work-conjugate to increments of strain. This PVW is valid for all material types, including those that are conservative and those that are dissipative. Such a virtual work expression is the basis for a rigorous formulation of a finite element method for problems involving the deformation and electrostatic charging of materials, including electroactive polymers and switchable ferroelectrics. The internal virtual work expression is used to develop the structure of conservative constitutive laws governing, for example, electroactive elastomers and piezoelectric materials, thereby determining the form of the Maxwell or electrostatic stress. It is shown that the Maxwell or electrostatic stress has a form fully constrained by the constitutive law and cannot be chosen independently of it. The structure of constitutive laws for dissipative materials, such as viscoelastic electroactive polymers and switchable ferroelectrics, is similarly determined, and it is shown that the Maxwell or electrostatic stress for these materials is identical to that for a material having the same conservative response when the dissipative processes in the material are shut off. The form of the internal virtual work is used further to develop the structure of dissipative constitutive laws controlled by rearrangement of material internal variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号