首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   3篇
  国内免费   1篇
化学   92篇
力学   2篇
数学   14篇
物理学   14篇
  2023年   5篇
  2022年   16篇
  2021年   7篇
  2020年   9篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   5篇
  2010年   8篇
  2009年   2篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1977年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
91.
    
This article studies the solubility, Hansen solubility parameters (HSPs), and thermodynamic behavior of a naturally-derived bioactive thymoquinone (TQ) in different binary combinations of isopropanol (IPA) and water (H2O). The mole fraction solubilities (x3) of TQ in various (IPA + H2O) compositions are measured at 298.2–318.2 K and 0.1 MPa. The HSPs of TQ, neat IPA, neat H2O, and binary (IPA + H2O) compositions free of TQ are also determined. The x3 data of TQ are regressed by van’t Hoff, Apelblat, Yalkowsky–Roseman, Buchowski–Ksiazczak λh, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models. The maximum and minimum x3 values of TQ are recorded in neat IPA (7.63 × 10−2 at 318.2 K) and neat H2O (8.25 × 10−5 at 298.2 K), respectively. The solubility of TQ is recorded as increasing with the rise in temperature and IPA mass fraction in all (IPA + H2O) mixtures, including pure IPA and pure H2O. The HSP of TQ is similar to that of pure IPA, suggesting the great potential of IPA in TQ solubilization. The maximum molecular solute-solvent interactions are found in TQ-IPA compared to TQ-H2O. A thermodynamic study indicates an endothermic and entropy-driven dissolution of TQ in all (IPA + H2O) mixtures, including pure IPA and pure H2O.  相似文献   
92.
93.
    
Nowadays, Green Analytical Chemistry is widely applied to provide various analytical methods with eco-friendly procedures employing the least toxic, harmful reagents on humans and the environment without affecting the efficacy of the determination. Accordingly, two eco-friendly, accurate, and reliable high-performance thin-layer chromatography-densitometry and high-performance liquid chromatographic methods were established for the determination and separation of two antispasmodic drugs, namely phloroglucinol and trimethylphloroglucinol in their pure, combined dosage form along with phloroglucinol toxic impurity, 3,5-dichloroaniline. For high-performance thin-layer chromatography-densitometry, efficient separation was developed via utilizing the stationary phase of high-performance thin-layer chromatography silica gel 60 F254 plates and developing a system comprising of ethyl acetate-butanol-ammonia in the ratio of 8.0:2.0:0.2, by volume and scanning of the developed bands at 210.0 nm. The subsequent method is isocratic high-performance liquid chromatography with diode array detection in which separation was successively attained using XTerra RP-C18 (250 × 4.6 mm, 5 μm) column as stationary phase and methanol-10.0 mM phosphate buffer, pH 3.7 ± 0.1 as mobile phase in the ratio of 75.0:25.0, v/v at flow rate 1.0 ml/min and scanning at 220.0 nm. The developed liquid chromatography methods were validated according to the International Council for Harmonization guidelines, and all results acknowledged their efficacy. Additionally, the proposed methods worked well for assessing the cited drugs in binary combined commercially available pharmaceutical formulation. The greenness profile of the present methods was assessed and estimated using various assessment tools, namely; Green Analytical Procedure Index, analytical eco-scale method, National Environmental Method Index in addition to Analytical GREEnness tool to evaluate the greenness of the provided methods with a statistical comparison between them to assess the more green ones.  相似文献   
94.
    
C60 donor dyads in which the carbon cage is covalently linked to an electron-donating unit have been discussed as one possibility for an electron-transfer system, and it has been shown that spherical [Ge9] cluster anions show a close relation to fullerenes with respect to their electronic structure. However, the optical properties of these clusters and of functionalized cluster derivatives are almost unknown. We now report on the synthesis of the intensely red [Ge9] cluster linked to an extended π-electron system. [Ge9{Si(TMS)3}2{CH3C=N}-DAB(II)Dipp] ( 1 ) is formed upon the reaction of [Ge9{Si(TMS)3}2]2− with bromo-diazaborole DAB(II)Dipp-Br in CH3CN (TMS=trimethylsilyl; DAB(II)=1,3,2-diazaborole with an unsaturated backbone; Dipp=2,6-di-iso-propylphenyl). Reversible protonation of the imine entity in 1 yields the deep green, zwitterionic cluster [Ge9{Si(TMS)3}2{CH3C=N(H)}-DAB(II)Dipp] ( 1-H ) and vice versa. Optical spectroscopy combined with time-dependent density functional theory suggests a charge-transfer excitation between the cluster and the antibonding π* orbital of the imine moiety as the cause of the intense coloration. An absorption maximum of 1-H in the red region of the electromagnetic spectrum and the corresponding lowest-energy excited state at λ=669 nm make the compound an interesting starting point for further investigations targeting the design of photo-active cluster compounds.  相似文献   
95.
    
Achieving in a straightforward way the synthesis of enantioenriched elaborated three-dimensional molecules related to bioactive natural products remains a long-standing quest in organic synthesis. Enantioselective organocatalysis potentially offers a unique opportunity to solve this problem, especially when combined with complementary modes of activation. Here, we report the sequential association of organocatalytic and superacid activations of simple linear achiral readily available precursors to promote the formation of unique highly elaborated chiral methylene-bridged benzazocanes exhibiting three to five fully-controlled stereocenters. This peculiar backbone, difficult to assemble by standard synthetic approaches, is closely related to bioactive natural and synthetic morphinans and benzomorphans. The formation of a highly reactive chiral 7-membered ring N-acyl iminium superelectrophilic ion, evidenced by low-temperature in situ NMR experiments, triggers a challenging stereoselective Friedel–Crafts-type cyclization.  相似文献   
96.
    
Flexible and lightweight pressure sensors have attracted tremendous attention as a promising component of wearable biological motion sensors and artificial electronic skins. Here, the electromechanical response of as‐electrospun fiber mats composed of a commodity polymer, atactic polystyrene, which can be applied in low‐cost/large‐area, flexible, and lightweight pressure sensors is demonstrated. The fiber mat demonstrates a significantly high apparent converse piezoelectric constant of >30 000 pm V−1 under static measurement and ≈13 000 pm V−1 even at a high frequency of 1 kHz. The first theoretical model to explain the unique electromechanical response is constructed, which reveals that the softness and moderate charge of the fiber mat are the reasons for the significantly high electromechanical response. Further, apparent piezoelectric constants obtained by direct measurement are lower than those obtained by the converse measurement, which is attributed to the densification and hardening of the fiber mat due to prepressure applied in direct measurement. These findings are likely to serve as a milestone for the development of large‐area, flexible, and lightweight pressure sensors at low cost, as well as highly movable actuators like optical modulators without a substantial mechanical load.  相似文献   
97.
Aspirin possesses antipyretic, anti-inflammatory, analgesic and anti-aggregatory activity. The acetylsalicylic acid molecule has a carboxyl group and an ester group. The ester group can be easily hydrolyzed, which reduces the medicinal value and causes side effects on humans. The aim of the present study was to prepare solid complexes between aspirin and humic by lyophilization and solvent evaporation technique in the molar ratio 1:1 and 1:2. Molecular interaction between aspirin and humic acid were studied by DSC, XRD, FT-IR and scanning electron microscopy. This technique clearly demonstrated the existence of solid inclusion complex formation. The lyophilized complex in the molar ratio 1:2 showed enhanced stability and dissolution rates of aspirin significantly. A highly significant (p < 0.05) anti-inflammatory action of the treatment of optimized freeze dried (1:2) aspirin complex with humic acid was evidenced by inhibition of rat paw edema and anti-ulcerogenic action was measured by lowest score (0.63 ± 0.10) with significant reduction in ulceration as compared to aspirin alone.  相似文献   
98.
In vivo data are rare but essential for establishing the clinical potential of ruthenium-based photoactivated chemotherapy (PACT) compounds, a new family of phototherapeutic drugs that are activated via ligand photosubstitution. Here a novel trisheteroleptic ruthenium complex [Ru(dpp)(bpy)(mtmp)](PF6)2 ([2](PF6)2, dpp = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, mtmp = 2-methylthiomethylpyridine) was synthesized and its light-activated anticancer properties were validated in cancer cell monolayers, 3D tumor spheroids, and in embryonic zebrafish cancer models. Upon green light irradiation, the non-toxic mtmp ligand is selectively cleaved off, thereby releasing a phototoxic ruthenium-based photoproduct capable notably of binding to nuclear DNA and triggering DNA damage and apoptosis within 24–48 h. In vitro, fifteen minutes of green light irradiation (21 mW cm−2, 19 J cm−2, 520 nm) were sufficient to generate high phototherapeutic indexes (PI) for this compound in a range of cancer cell lines including lung (A549), prostate (PC3Pro4), conjunctival melanoma (CRMM1, CRMM2, CM2005.1) and uveal melanoma (OMM1, OMM2.5, Mel270) cancer cell lines. The therapeutic potential of [2](PF6)2 was further evaluated in zebrafish embryo ectopic (PC3Pro4) or orthotopic (CRMM1, CRMM2) tumour models. The ectopic model consisted of red fluorescent PC3Pro4-mCherry cells injected intravenously (IV) into zebrafish, that formed perivascular metastatic lesions at the posterior ventral end of caudal hematopoietic tissue (CHT). By contrast, in the orthotopic model, CRMM1- and CRMM2-mCherry cells were injected behind the eye where they developed primary lesions. The maximally-tolerated dose (MTD) of [2](PF6)2 was first determined for three different modes of compound administration: (i) incubating the fish in prodrug-containing water (WA); (ii) injecting the prodrug intravenously (IV) into the fish; or (iii) injecting the prodrug retro-orbitally (RO) into the fish. To test the anticancer efficiency of [2](PF6)2, the embryos were treated 24 h after engraftment at the MTD. Optimally, four consecutive PACT treatments were performed on engrafted embryos using 60 min drug-to-light intervals and 90 min green light irradiation (21 mW cm−2, 114 J cm−2, 520 nm). Most importantly, this PACT protocol was not toxic to the zebrafish. In the ectopic prostate tumour models, where [2](PF6)2 showed the highest photoindex in vitro (PI > 31), the PACT treatment did not significantly diminish the growth of primary lesions, while in both conjunctival melanoma orthotopic tumour models, where [2](PF6)2 showed more modest photoindexes (PI ∼ 9), retro-orbitally administered PACT treatment significantly inhibited growth of the engrafted tumors. Overall, this study represents the first demonstration in zebrafish cancer models of the clinical potential of ruthenium-based PACT, here against conjunctival melanoma.

A new tris-heteroleptic photoactivated chemotherapy ruthenium complex induces apoptosis upon green light activation in a zebrafish orthothopic conjunctival melanoma xenograft model.  相似文献   
99.
Herein, 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline was used as a bio-isosteric scaffold to the phthalazinone motif of the standard drug Olaparib to design and synthesize new derivatives of potential PARP-1 inhibitory activity using the 6-sulfonohydrazide analog 3 as the key intermediate. Although the new compounds represented the PARP-1 suppression impact of IC50 values in the nanomolar range, compounds 8a, 5 were the most promising suppressors, producing IC50 values of 2.31 and 3.05 nM compared to Olaparib with IC50 of 4.40 nM. Compounds 4, 10b, and 11b showed a mild decrease in the potency of the IC50 range of 6.35–8.73 nM. Furthermore, compounds 4, 5, 8a, 10b, and 11b were evaluated as in vitro antiproliferative agents against the mutant BRCA1 (MDA-MB-436, breast cancer) compared to Olaparib as a positive control. Compound 5 exhibited the most significant potency of IC50; 2.57 µM, whereas the IC50 value of Olaparib was 8.90 µM. In addition, the examined derivatives displayed a promising safety profile against the normal WI-38 cell line. Cell cycle, apoptosis, and autophagy analyses were carried out in the MDA-MB-436 cell line for compound 5, which exhibited cell growth arrest at the G2/M phase, in addition to induction of programmed apoptosis and an increase in the autophagic process. Molecular docking of the compounds 4, 5, 8a, 10b, and 11b into the active site of PARP-1 was carried out to determine their modes of interaction. In addition, an in silico ADMET study was performed. The results evidenced that compound 5 could serve as a new framework for discovering new potent anticancer agents targeting the PARP-1 enzyme.  相似文献   
100.
Parkinson’s disease (PD) and Alzheimer’s disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski’s drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer’s animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号