首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92509篇
  免费   2887篇
  国内免费   2284篇
化学   34980篇
晶体学   1003篇
力学   7530篇
综合类   130篇
数学   33393篇
物理学   20644篇
  2024年   64篇
  2023年   322篇
  2022年   574篇
  2021年   580篇
  2020年   593篇
  2019年   656篇
  2018年   10846篇
  2017年   10670篇
  2016年   6725篇
  2015年   1558篇
  2014年   1208篇
  2013年   1523篇
  2012年   5162篇
  2011年   11921篇
  2010年   6596篇
  2009年   6989篇
  2008年   7533篇
  2007年   9653篇
  2006年   997篇
  2005年   1961篇
  2004年   2084篇
  2003年   2393篇
  2002年   1412篇
  2001年   589篇
  2000年   613篇
  1999年   402篇
  1998年   400篇
  1997年   310篇
  1996年   379篇
  1995年   261篇
  1994年   228篇
  1993年   210篇
  1992年   167篇
  1991年   155篇
  1990年   137篇
  1989年   135篇
  1988年   102篇
  1987年   98篇
  1986年   99篇
  1985年   86篇
  1984年   71篇
  1983年   52篇
  1982年   47篇
  1981年   48篇
  1980年   52篇
  1979年   55篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
A novel cationic gemini surfactant has been readily synthesised in 70 % total yield. The functional gemini surfactant can act both as an emulsifier and an atom transfer radical polymerisation (ATRP) initiator in mini-emulsion polymerisation of methyl methacrylate (MMA), in which no other emulsifier was required. 1-(Dimethylamino)dodecane (N,N-dimethyldodecylamine, DMDA) was found to be a good ligand in the activator generated by electron transfer (AGET) ATRP reaction. Kinetic studies indicated that the polymerisation featured controlled/living radical polymerisation.  相似文献   
992.
洪晓东  杨亮  梁兵 《化学通报》2013,(9):795-799
本文综述了不同类型硫醇配体修饰金纳米粒子的合成方法以及功能性金纳米粒子在嵌段共聚物薄膜中的自组装研究进展,重点介绍了硫醇类配体修饰金纳米粒子的合成方法,包括Brust合成法、原位合成法、grafting from合成法、配体置换法、单晶模板法等。总结了硫醇基小分子或聚合物配体修饰的金纳米粒子与嵌段共聚物之间自组装的调控方法,如利用配体与嵌段共聚物组分的隔离作用、配体与嵌段共聚物组分形成的氢键作用、溶剂蒸气退火或热退火等诱导嵌段共聚物/纳米粒子复合薄膜自组装。展望了功能性金纳米粒子以及嵌段共聚物/金纳米复合材料的发展方向。  相似文献   
993.
A detailed study of the reaction conditions revealed that a quantitative cyclocondensation of 1,4-dialkoxy-2,5-bis(alkoxymethyl)-benzenes to pillar[n]arenes can be achieved by catalysis of p-toluenesulfonic acid in CH2Cl2. Major product of this new reaction is in each case a cyclopentamer (n = 5), but small amounts of the pillar[n]arenes with n = 6, 7 and 10 can be obtained as well. Different alkoxy groups in 1- and 4-position lead to regioisomers. All cyclooligomers exist in pillar structures as pair of enantiomers, which show a racemisation at room temperature, which is fast in terms of the NMR time scale. The racemisation process occurs by rotation of the 1,4-phenylene segments in the macrocyclic rings. Pillar[n]arenes exhibit novel host–guest behavior.  相似文献   
994.
Two new β-CD-calix[4]arene coupling products 3,4 which contained one or two β-CD units in molecules were synthesized by ammonolysis of p-tert-butyl-25,27-dihydroxyl-26,28-di (ethoxy carbonyl methoxyl) calix[4]arene 1 and mono-6-ethylenediamino-6-deoxy-β-CD 2, and their structures were confirmed by 1H NMR, IR and MS (Maldi-Tof). The probable mechanism for forming 3 was discussed also. Using water-insoluble coupling product 3 as an adsorbent, the influences of the adsorption capacities of 3 including initial concentration, temperature and pH onto basic fuchsin (BF) and methylene blue (MB) from aqueous solution were investigated. Results showed that the adsorption capability of 3 to BF was obviously higher than that to MB at similar adsorption conditions. The values of %sorption to BF were over 90 % in range of initial concentrations from 20 to 140 mg L?1 whenas those to MB dropped rapidly from 92 to 58 %. The adsorptions of 3 to both BF and MB obeyed Freundlich adsorption isotherm well.  相似文献   
995.
New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C–N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.  相似文献   
996.
The synthesis of an anthracene‐bearing photoactive barbituric acid receptor and its subsequent grafting onto azide‐terminated alkanethiol/Au self‐assembled monolayers by using an CuI‐catalyzed azide–alkyne reaction is reported. Monolayer characterization using contact‐angle measurements, electrochemistry, and spectroscopic ellipsometry indicate that the monolayer conversion is fast and complete. Irradiation of the receptor leads to photodimerization of the anthracenes, which induces the open‐to‐closed gating of the receptor by blocking access to the binding site. The process is thermally reversible, and polarization‐modulated IR reflection–absorption spectroscopy indicates that photochemical closure and thermal opening of the surface‐bound receptors occur in 70 and 100 % conversion, respectively. Affinity of the open and closed surface‐bound receptor was characterized by using force spectroscopy with a barbituric‐acid‐modified atomic force microscope tip.  相似文献   
997.
Gold nanoparticles (3–4 nm) were deposited on Mn3O4 nanocrystallites with three distinct morphologies (cubic, hexagonal, and octahedral). The resulting structures were characterized, and their activities for benzene combustion were evaluated. The dominant exposed facets for the three kinds of Mn3O4 polyhedrons show the activity order: (103)≈(200)>(101). A similar activity order was derived for the interfaces between the Au and the Mn3O4 facet: Au/(200)≈Au/(103)>Au/(101). The metal–support interactions between the Au nanoclusters and specific facets of the Mn3O4 polyhedrons lead to a unique interfacial synergism in which the electronic modification of the Au nanoparticles and the morphology of the Mn3O4 substrate have a joint effect that is responsible for a significant enhancement in the catalytic activity of the Au/Mn3O4 system.  相似文献   
998.
Site‐specific labeling of proteins with lanthanide ions offers great opportunities for investigating the structure, function, and dynamics of proteins by virtue of the unique properties of lanthanides. Lanthanide‐tagged proteins can be studied by NMR, X‐ray, fluorescence, and EPR spectroscopy. However, the rigidity of a lanthanide tag in labeling of proteins plays a key role in the determination of protein structures and interactions. Pseudocontact shift (PCS) and paramagnetic relaxation enhancement (PRE) are valuable long‐range structure restraints in structural‐biology NMR spectroscopy. Generation of these paramagnetic restraints generally relies on site‐specific tagging of the target proteins with paramagnetic species. To avoid nonspecific interaction between the target protein and paramagnetic tag and achieve reliable paramagnetic effects, the rigidity, stability, and size of lanthanide tag is highly important in paramagnetic labeling of proteins. Here 4′‐mercapto‐2,2′: 6′,2′′‐terpyridine‐6,6′′‐dicarboxylic acid (4MTDA) is introduced as a a rigid paramagnetic and fluorescent tag which can be site‐specifically attached to a protein by formation of a disulfide bond. 4MTDA can be readily immobilized by coordination of the protein side chain to the lanthanide ion. Large PCSs and RDCs were observed for 4MTDA‐tagged proteins in complexes with paramagnetic lanthanide ions. At an excitation wavelength of 340 nm, the complex formed by protein–4MTDA and Tb3+ produces high fluorescence with the main emission at 545 nm. These interesting features of 4MTDA make it a very promising tag that can be exploited in NMR, fluorescence, and EPR spectroscopic studies on protein structure, interaction, and dynamics.  相似文献   
999.
Herein, we report a “threading followed by shrinking” approach for the synthesis of rotaxanes by using an “oxygen‐deficient” macrocycle that contained two arylmethyl sulfone units and the dumbbell‐shaped salt bis(3,5‐dimethylbenzyl)ammonium tetrakis(3,5‐trifluoromethylphenyl)borate as the host and guest components, respectively. The extrusion of SO2 from both of the arylmethyl sulfone units of the macrocyclic component in the corresponding [2]pseudorotaxane resulted in a [2]rotaxane that was sufficiently stable to maintain its molecular integrity in CD3SOCD3 at 393 K for at least 5 h.  相似文献   
1000.
This paper reports the facile design and synthesis of a series of lipidic organoalkoxysilanes with different numbers of triethoxysilane headgroups and hydrophobic alkyl chains linked by glycerol and pentaerythritol for the construction of cerasomes with regulated surface siloxane density and controlled release behavior. It was found that the number of triethoxysilane headgroups affected the properties of the cerasomes for encapsulation efficiency, drug loading capacity, and release behavior. For both water‐soluble doxorubicin (DOX) and water‐insoluble paclitaxel (PTX), the release rate from the cerasomes decreased as the number of triethoxysilane headgroups increased. The slower release rate from the cerasomes was attributed to the higher density of the siloxane network on the surface of the cerasomes, which blocks the drug release channels. In contrast to the release results with DOX, the introduction of one more hydrophobic alkyl chain into the cerasome‐forming lipid resulted in a slower release rate of PTX from the cerasomes due to the formation of a more compact cerasome bilayer. An MTT viability assay showed that all of these drug‐loaded cerasomes inhibited proliferation of the HepG2 cancer cell line. The fine tuning of the chemical structure of the cerasome‐forming lipids would foster a new strategy to precisely regulate the release rate of drugs from cerasomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号