全文获取类型
收费全文 | 57411篇 |
免费 | 9132篇 |
国内免费 | 6145篇 |
专业分类
化学 | 40137篇 |
晶体学 | 682篇 |
力学 | 3395篇 |
综合类 | 351篇 |
数学 | 6534篇 |
物理学 | 21589篇 |
出版年
2024年 | 204篇 |
2023年 | 1199篇 |
2022年 | 2210篇 |
2021年 | 2364篇 |
2020年 | 2424篇 |
2019年 | 2296篇 |
2018年 | 1973篇 |
2017年 | 1889篇 |
2016年 | 2839篇 |
2015年 | 2820篇 |
2014年 | 3305篇 |
2013年 | 4269篇 |
2012年 | 5241篇 |
2011年 | 5169篇 |
2010年 | 3582篇 |
2009年 | 3351篇 |
2008年 | 3606篇 |
2007年 | 3169篇 |
2006年 | 2861篇 |
2005年 | 2460篇 |
2004年 | 1902篇 |
2003年 | 1531篇 |
2002年 | 1384篇 |
2001年 | 1119篇 |
2000年 | 979篇 |
1999年 | 1140篇 |
1998年 | 918篇 |
1997年 | 869篇 |
1996年 | 861篇 |
1995年 | 782篇 |
1994年 | 650篇 |
1993年 | 561篇 |
1992年 | 457篇 |
1991年 | 428篇 |
1990年 | 364篇 |
1989年 | 265篇 |
1988年 | 190篇 |
1987年 | 174篇 |
1986年 | 173篇 |
1985年 | 157篇 |
1984年 | 96篇 |
1983年 | 103篇 |
1982年 | 62篇 |
1981年 | 42篇 |
1980年 | 30篇 |
1979年 | 18篇 |
1977年 | 18篇 |
1976年 | 20篇 |
1975年 | 22篇 |
1972年 | 19篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Three new hexa-Ni-substituted Keggin-type polyoxometalates (POMs), [Ni6(OH)3- (DACH)3(H2O)6(PW9O34)]·31H2O (1), [Ni(DACH)2][Ni6(OH)3(DACH)3(HMIP)2(H2O)2(PW9O34)]·56 H2O (2), and [Ni(DACH)2][Ni6(OH)3(DACH)2(AP)(H2O)5(PW9O34)]·2H2O (3) (DACH = 1,2-Diami- nocyclohexane, MIP = 5-Methylisophthalate, AP = Adipate) were successfully made in the presence of DACH under hydrothermal conditions. 1 is an isolated hexa-Ni-substituted Keggin unit decorated by DACH. In order to further construct POM cluster-organic frameworks (POMCOFs) on the basis of 1, by analyzing the steric hindrances and orientations of the POM units, the rigid HMIP and flexible AP ligands were successively incorporated, and another anionic monomeric POM 2 and the new 1D POM cluster organic chain (POMCOC) 3 were obtained. HMIP ligand still acts as a decorating group on the Ni6 core of 2 but results in the different spatial arrangement of the {Ni6PW9} units. AP ligands in 3 successfully bridge adjacent isolated POM cluster units to 1D POMCOC with left-hand helices. The AP in 3 is the longest aliphatic carboxylic acid ligand in POMs, and the 1D POM cluster-AP helical chain represents the first 1D POMCOC with a helical feature. 相似文献
152.
Chun-Yan Zhang Li-Jing Peng Guo-Ying Chen Hao Zhang Feng-Qing Yang 《Molecules (Basel, Switzerland)》2022,27(13)
The peroxidase-like activity of vitamin B6 (VB6) was firstly demonstrated by catalyzing the peroxidase chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) at the existence of H2O2. The influence of different factors on the catalytic property of VB6, including pH, temperature, VB6 concentration, and incubation time, were investigated. The steady-state kinetic study results indicate that VB6 possesses higher affinity to H2O2 than natural horseradish peroxidase and some other peroxidase mimics. Besides, the radical quenching experiment results confirm that hydroxyl radical (•OH) accounts for the catalytic process. Based on the excellent peroxidase-like catalytic activity of VB6, the colorimetric methods for H2O2 and gallic acid (GA) detection were developed by measuring the absorbance variance of the catalytic system. Under the optimal conditions, the linear ranges of the methods for H2O2 and GA determination with good selectivity are 50.0–600.0 μM and 10.0–50.0 μM, respectively. In addition, the developed method was applied in the detection of H2O2 in milk samples and evaluation of total antioxidant capacity of different tea infusions. This study may broaden the application prospect of VB6 in environmental and biomedical analysis fields, contribute to profound insight of the physiological functions of VB6, as well as lay foundation for further excavation of small-molecule peroxidase mimics. 相似文献
153.
Interfacial Charge Transfer Induced Electronic Property Tuning of MoS_2 by Molecular Functionalization 下载免费PDF全文
Si-Han Zhou Chun-Wei Zhou Xiang-Dong Yang Yang Li Jian-Qiang Zhong Hong-Ying Mao 《中国物理快报》2021,(5):104-110
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices. 相似文献
154.
Shunli Ni Sheng Ma Yuhang Zhang Jie Yuan Haitao Yang Zouyouwei Lu Ningning Wang Jianping Sun Zhen Zhao Dong Li Shaobo Liu Hua Zhang Hui Chen Kui Jin Jinguang Cheng Li Yu Fang Zhou Xiaoli Dong Jiangping Hu Hong-Jun Gao Zhongxian Zhao 《中国物理快报》2021,(5):133-137
We systematically measure the superconducting(SC) and mixed state properties of high-quality CsV_3 Sb_5 single crystals with T_c~3.5 K.We find that the upper critical field H_(c2)(T) exhibits a large anisotropic ratio of H_(c2)~(ab)/H_(c2)~c~9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model.Moreover,the ratio of the lower critical field,H_(c1)~(ab)/H_(c1)~c,is also found to be larger than 1,which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy.Both H_(c1)(T) and SC diamagnetic signal are found to change little initially below T_c~3.5 K and then to increase abruptly upon cooling to a characteristic temperature of ~2.8 K.Furthermore,we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state.Interestingly,we find that,below the same characteristic T~2.8 K,the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60° characteristic of the Kagome geometry.Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice,which,at least,is partially driven by electron-electron correlation. 相似文献
155.
A turnout switch machine is key equipment in a railway, and its fault condition has an enormous impact on the safety of train operation. Electrohydraulic switch machines are increasingly used in high-speed railways, and how to extract effective fault features from their working condition monitoring signal is a difficult problem. This paper focuses on the sectionalized feature extraction method of the oil pressure signal of the electrohydraulic switch machine and realizes the fault detection of the switch machine based on this method. First, the oil pressure signal is divided into three stages according to the working principle and action process of the switch machine, and multiple features of each stage are extracted. Then the max-relevance and min-redundancy (mRMR) algorithm is applied to select the effective features. Finally, the mini batch k-means method is used to achieve unsupervised fault diagnosis. Through experimental verification, this method can not only derive the best sectionalization mode and feature types of the oil pressure signal, but also achieve the fault diagnosis and the prediction of the status of the electrohydraulic switch machine. 相似文献
156.
157.
Muhammad Yousaf Dennis Chang Yang Liu Tianqing Liu Xian Zhou 《Molecules (Basel, Switzerland)》2022,27(15)
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components. 相似文献
158.
Weiguo Wang Minkang Feng Xiaomeng Li Feiyu Chen Zhihao Zhang Wenlong Yang Chen Shao Liming Tao Yang Zhang 《Molecules (Basel, Switzerland)》2022,27(15)
Actinomycetes play a vital role as one of the most important natural resources for both pharmaceutical and agricultural applications. The actinomycete strain SPRI-371, isolated from soil collected in Jiangsu province, China, was classified as Streptomyces aureus based on its morphological, physiological, biochemical and molecular biological characteristics. Its bacterial activity metabolites were identified as aureonuclemycin (ANM), belonging to adenosine derivatives with the molecular formula C16H19N5O9 for ANM A and C10H13N5O3 for ANM B. Simultaneously, the industrial fermentation process of a mutated S. aureus strain SPRI-371 was optimized in a 20 m3 fermentation tank, featuring a rotation speed of 170 rpm, a pressure of 0.05 MPa, an inoculum age of 36–40 h and a dissolved oxygen level maintained at 1–30% within 40–80 h and at >60% in the later period, resulting in an ANM yield of >3700 mg/L. In the industrial separation of fermentation broth, the sulfuric acid solution was selected to adjust pH and 4# resin was used for adsorption. Then, it was resolved with 20% ethanol solution and concentrated in a vacuum (60–65 °C), with excellent results. Antibacterial experiments showed that ANM was less active or inactive against Xanthomonas oryzae pv. oryzae, Xanthomonas citri subsp. citri and Xanthomonas oryzae pv. oryzicola and most bacteria, yeast and fungi in vitro. However, in vivo experiments showed that ANM exhibited extremely significant protective and therapeutic activity against diseases caused by X. oryzae pv. oryzae and X. oryzae pv. oryzicola in rice and X. citri in oranges and lemons. In field trials, ANM A 150 gai/ha + ANM B 75 gai/ha exhibited excellent therapeutic activity against rice bacterial leaf blight, citrus canker and rice bacterial leaf streak. Furthermore, as the dosage and production cost of ANM are lower than those of commercial drugs, it has good application prospects. 相似文献
159.
Yue Liu Congmin Wang Rong Guo Juexiu Li Quan Zhao Weiqiang Wang Fei Qi Haifang Liu Yang Li Huifan Zheng 《Molecules (Basel, Switzerland)》2022,27(15)
Iron–manganese silicate (IMS) was synthesized by chemical coprecipitation and used as a catalyst for ozonating acrylic acid (AA) in semicontinuous flow mode. The Fe-O-Mn bond, Fe-Si, and Mn-Si binary oxide were formed in IMS on the basis of the results of XRD, FTIR, and XPS analysis. The removal efficiency of AA was highest in the IMS catalytic ozonation processes (98.9% in 15 min) compared with ozonation alone (62.7%), iron silicate (IS) catalytic ozonation (95.6%), and manganese silicate catalytic ozonation (94.8%). Meanwhile, the removal efficiencies of total organic carbon (TOC) were also improved in the IMS catalytic ozonation processes. The IMS showed high stability and ozone utilization. Additionally, H2O2 was formed in the process of IMS catalytic ozonation. Electron paramagnetic resonance (EPR) analysis and radical scavenger experiments confirmed that hydroxyl radicals (•OH) were the dominant oxidants. Cl−, HCO3−, PO43−, Ca2+, and Mg2+ in aqueous solution could adversely affect AA degradation. In the IMS catalytic ozonation of AA, the surface hydroxyl groups and Lewis acid sites played an important role. 相似文献
160.
Ruiyang Li Haiming Hua Yuejing Zeng Jin Yang Zhiqiang Chen Peng Zhang Jinbao Zhao 《Journal of Energy Chemistry》2022,(1):395-403
Poly(ethylene oxide)(PEO) is a classic matrix model for solid polymer electrolyte which can not only dissociate lithium-ions(Li+),but also can conduct Li+through segmental motion in long-range.However,the crystal aggregation state of PEO restricts the conduction of Li+ especially at room temperature.In this work,an amorphous polymer electrolyte with ethylene oxide(EO) and propylene oxide(PO) block structure(B-PEG@DMC) synthesized by the transesterification is firstly obtained,showing ... 相似文献