全文获取类型
收费全文 | 32279篇 |
免费 | 6048篇 |
国内免费 | 9920篇 |
专业分类
化学 | 23835篇 |
晶体学 | 1151篇 |
力学 | 2260篇 |
综合类 | 979篇 |
数学 | 4869篇 |
物理学 | 15153篇 |
出版年
2024年 | 96篇 |
2023年 | 404篇 |
2022年 | 1160篇 |
2021年 | 1164篇 |
2020年 | 1222篇 |
2019年 | 1161篇 |
2018年 | 1105篇 |
2017年 | 1385篇 |
2016年 | 1238篇 |
2015年 | 1748篇 |
2014年 | 1963篇 |
2013年 | 2650篇 |
2012年 | 2750篇 |
2011年 | 2937篇 |
2010年 | 2721篇 |
2009年 | 2780篇 |
2008年 | 2973篇 |
2007年 | 2785篇 |
2006年 | 2605篇 |
2005年 | 2298篇 |
2004年 | 1743篇 |
2003年 | 1254篇 |
2002年 | 1289篇 |
2001年 | 1228篇 |
2000年 | 1278篇 |
1999年 | 735篇 |
1998年 | 398篇 |
1997年 | 360篇 |
1996年 | 341篇 |
1995年 | 309篇 |
1994年 | 314篇 |
1993年 | 277篇 |
1992年 | 235篇 |
1991年 | 152篇 |
1990年 | 147篇 |
1989年 | 157篇 |
1988年 | 121篇 |
1987年 | 89篇 |
1986年 | 90篇 |
1985年 | 58篇 |
1984年 | 70篇 |
1983年 | 53篇 |
1982年 | 54篇 |
1981年 | 47篇 |
1980年 | 37篇 |
1979年 | 46篇 |
1978年 | 34篇 |
1976年 | 13篇 |
1974年 | 17篇 |
1965年 | 12篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
为探究稀土氧化物中氟(F)和氯(Cl)元素含量的快速检测方法,通过全自动高温水解仪对氧化镧铈样品进行前处理,并利用氢氧根体系离子色谱仪检测吸收液中F-、Cl-离子的含量,建立了基于全自动高温水解-离子色谱法测定氧化镧铈中的F、Cl元素含量的快速检测方法,该方法有效避免了传统前处理方法过程复杂、分析时间慢、极易受人为干扰的问题。称取0.3g氧化镧铈样品,在氧气流量为300 mL/min,1100 ℃高温下水解燃烧20 min,吸收定容为体积20mL的吸收液,以NAOH(15mmol/L)作为淋洗液,经色谱柱分离,测得F-与Cl-在质量浓度为1.00 mg/L-15.00 mg/L范围内,质量浓度与离子色谱峰面积呈线性关系,相关系数均为0.9999。检出限分别为0.003mg/L和0.12mg/L。全自动高温水解仪联用离子色谱仪检测系统对氧化镧铈中F-的平均加标回收率测定结果为98.4%,标准偏差RSD为0.94%;对Cl-的加标回收率测定结果为97.8%,RSD为2.86%。说明该方法较高准确度及精密度,测试结果准确可靠满足企业和检测机构的测试需求,为稀土氧化中氟、氯元素含量的研究及相关产品的开发提供了理论基础。 相似文献
42.
Bowei Yan Xiaona Ye Jing Wang Junshan Han Lianlian Wu Song He Kunhong Liu Xiaochen Bo 《Molecules (Basel, Switzerland)》2022,27(10)
In the process of drug discovery, drug-induced liver injury (DILI) is still an active research field and is one of the most common and important issues in toxicity evaluation research. It directly leads to the high wear attrition of the drug. At present, there are a variety of computer algorithms based on molecular representations to predict DILI. It is found that a single molecular representation method is insufficient to complete the task of toxicity prediction, and multiple molecular fingerprint fusion methods have been used as model input. In order to solve the problem of high dimensional and unbalanced DILI prediction data, this paper integrates existing datasets and designs a new algorithm framework, Rotation-Ensemble-GA (R-E-GA). The main idea is to find a feature subset with better predictive performance after rotating the fusion vector of high-dimensional molecular representation in the feature space. Then, an Adaboost-type ensemble learning method is integrated into R-E-GA to improve the prediction accuracy. The experimental results show that the performance of R-E-GA is better than other state-of-art algorithms including ensemble learning-based and graph neural network-based methods. Through five-fold cross-validation, the R-E-GA obtains an ACC of 0.77, an F1 score of 0.769, and an AUC of 0.842. 相似文献
43.
建立蝙蝠发声组织模型对超声机理研究及在智能设备的应用具有重要意义。根据蝙蝠喉部发声组织结构特点,通过有限元方法构建了蝙蝠的3种不同发声组织模型,分析了尺寸、材料力学参数、组织结构和张力4个因素对发声组织特征频率的影响。结果表明,如果用人类声带,按比例缩小构建蝙蝠喉部组织模型,蝙蝠无法发出超声波。构建组织结构含甲状软骨和声带的半鼓状模型和只含声带的条状模型,两种模型的特征频率相近且在合理的参数域内均无法达到超声范围。而含膜条状模型的特征频率可以通过张力进行超声频率的调节,这与文献的实验结果一致。因此,可基于含膜条状模型对蝙蝠喉管发声组织进行建模及其发声机理研究。 相似文献
44.
Liuhai Wang Xin Du Bo Jiang Weifeng Pan Hua Ming Dongsheng Liu 《Entropy (Basel, Switzerland)》2022,24(5)
Software maintenance is indispensable in the software development process. Developers need to spend a lot of time and energy to understand the software when maintaining the software, which increases the difficulty of software maintenance. It is a feasible method to understand the software through the key classes of the software. Identifying the key classes of the software can help developers understand the software more quickly. Existing techniques on key class identification mainly use static analysis techniques to extract software structure information. Such structure information may contain redundant relationships that may not exist when the software runs and ignores the actual interaction times between classes. In this paper, we propose an approach based on dynamic analysis and entropy-based metrics to identify key classes in the Java GUI software system, called KEADA (identifying KEy clAsses based on Dynamic Analysis and entropy-based metrics). First, KEADA extracts software structure information by recording the calling relationship between classes during the software running process; such structure information takes into account the actual interaction of classes. Second, KEADA represents the structure information as a weighted directed network and further calculates the importance of each node using an entropy-based metric OSE (One-order Structural Entropy). Third, KEADA ranks classes in descending order according to their OSE values and selects a small number of classes as the key class candidates. In order to verify the effectiveness of our approach, we conducted experiments on three Java GUI software systems and compared them with seven state-of-the-art approaches. We used the Friedman test to evaluate all approaches, and the results demonstrate that our approach performs best in all software systems. 相似文献
45.
46.
In this paper,we consider a delayed diffusive SVEIR model with general inci-dence.We first establish the threshold dynamics of this model.Using a Nonstandard Fi... 相似文献
47.
Rice blast is a serious threat to rice yield. Breeding disease-resistant varieties is one of the most economical and effective ways to prevent damage from rice blast. The traditional identification of resistant rice seeds has some shortcoming, such as long possession time, high cost and complex operation. The purpose of this study was to develop an optimal prediction model for determining resistant rice seeds using Ranman spectroscopy. First, the support vector machine (SVM), BP neural network (BP) and probabilistic neural network (PNN) models were initially established on the original spectral data. Second, due to the recognition accuracy of the Raw-SVM model, the running time was fast. The support vector machine model was selected for optimization, and four improved support vector machine models (ABC-SVM (artificial bee colony algorithm, ABC), IABC-SVM (improving the artificial bee colony algorithm, IABC), GSA-SVM (gravity search algorithm, GSA) and GWO-SVM (gray wolf algorithm, GWO)) were used to identify resistant rice seeds. The difference in modeling accuracy and running time between the improved support vector machine model established in feature wavelengths and full wavelengths (200–3202 cm−1) was compared. Finally, five spectral preproccessing algorithms, Savitzky–Golay 1-Der (SGD), Savitzky–Golay Smoothing (SGS), baseline (Base), multivariate scatter correction (MSC) and standard normal variable (SNV), were used to preprocess the original spectra. The random forest algorithm (RF) was used to extract the characteristic wavelengths. After different spectral preproccessing algorithms and the RF feature extraction, the improved support vector machine models were established. The results show that the recognition accuracy of the optimal IABC-SVM model based on the original data was 71%. Among the five spectral preproccessing algorithms, the SNV algorithm’s accuracy was the best. The accuracy of the test set in the IABC-SVM model was 100%, and the running time was 13 s. After SNV algorithms and the RF feature extraction, the classification accuracy of the IABC-SVM model did not decrease, and the running time was shortened to 9 s. This demonstrates the feasibility and effectiveness of IABC in SVM parameter optimization, with higher prediction accuracy and better stability. Therefore, the improved support vector machine model based on Ranman spectroscopy can be applied to the fast and non-destructive identification of resistant rice seeds. 相似文献
48.
49.
在产品质量判定的抽样检验问题中,当目标指标需用破坏性试验才能得其值时,更为常用的是用非破坏性试验可得量值的协变指标量来预报它。但在产品抽样验收问题上,未能形成理论较为严密的方法,这是由于预报误差这个关键问题的处理尚未解决得好,即给不出抽样方案的功效计算的正确或是近似性较好的公式。本文通过建立合理的数学模型,把对目标指标的质量要求化为对协变指标量的统计要求,从而利用两者的回归关系,结合两种复杂的抽样方案,给出功效函数的计算公式和计算方法,并进行了分析。 相似文献
50.