首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10505篇
  免费   266篇
  国内免费   31篇
化学   7864篇
晶体学   31篇
力学   162篇
数学   1782篇
物理学   963篇
  2020年   138篇
  2019年   104篇
  2018年   77篇
  2017年   81篇
  2016年   189篇
  2015年   197篇
  2014年   187篇
  2013年   351篇
  2012年   393篇
  2011年   454篇
  2010年   336篇
  2009年   279篇
  2008年   455篇
  2007年   441篇
  2006年   466篇
  2005年   439篇
  2004年   377篇
  2003年   312篇
  2002年   327篇
  2001年   222篇
  2000年   155篇
  1999年   144篇
  1998年   179篇
  1997年   146篇
  1996年   152篇
  1995年   150篇
  1994年   144篇
  1993年   190篇
  1992年   127篇
  1991年   127篇
  1990年   114篇
  1989年   134篇
  1988年   131篇
  1987年   167篇
  1986年   156篇
  1985年   174篇
  1984年   186篇
  1983年   155篇
  1982年   142篇
  1981年   150篇
  1980年   153篇
  1979年   145篇
  1978年   136篇
  1977年   119篇
  1976年   133篇
  1975年   91篇
  1974年   88篇
  1973年   88篇
  1971年   80篇
  1970年   71篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Cell membranes are essential barriers in Nature. To understand their properties and functions and to develop desirable applications, a simple and elegant approach is to study membranes that mimic the cell membrane. Lipid bilayers represent simple models that are physiologically representative when in the form of mixtures of various lipids, but they are not adequately stable even when covered with amphipathic proteins or when combined with polymers, thus preventing technological applications. This makes necessary the design of completely synthetic membranes. In this respect, amphiphilic copolymers that self‐assemble under dilute aqueous conditions and generate supramolecular polymer vesicles or films are ideal candidates for synthetic membranes. Their versatility in terms of chemistry and properties (permeability, mechanical stability, thickness), if appropriately designed, enable the insertion of biological molecules, such as membrane proteins and biopores, or the attachment of biomolecules at their surfaces. Here, we present the domain of synthetic membranes based on amphiphilic copolymers beginning with their generation and up to their applications in medicine, the food industry, and technology. Even though significant progress has been made in combining them with membrane proteins, open questions remain with respect to desired properties that could accommodate biological molecules and support further development of the field, from both the point of view of fundamental understanding and of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
962.
1,1‐ADEQUATE and the related long‐range 1,n‐ and n,1‐ADEQUATE variants were developed to provide an unequivocal means of establishing 2JCH and the equivalent of nJCH correlations where n = 3,4. Whereas the 1,1‐ and 1,n‐ADEQUATE experiments have two simultaneous evolution periods that refocus the chemical shift and afford net single quantum evolution for the carbon spins, the n,1‐variant has a single evolution period that leaves the carbon spin to be observed at the double quantum frequency. The n,1‐ADEQUATE experiment begins with an HMBC‐type nJCH magnetization transfer, which leads to inherently lower sensitivity than the 1,1‐ and 1,n‐ADEQUATE experiments that begin with a 1JCH transfer. These attributes, in tandem, serve to render the n,1‐ADEQUATE experiment less generally applicable and more difficult to interpret than the 1,n‐ADEQUATE experiment, which can in principle afford the same structural information. Unsymmetrical and generalized indirect covariance processing methods can complement and enhance the structural information encoded in combinations of experiments e.g. HSQC‐1,1‐ or ?1,n‐ADEQUATE. Another benefit is that covariance processing methods offer the possibility of mathematically combining a higher sensitivity 2D NMR spectrum with for example 1,1‐ or 1,n‐ADEQUATE to improve access to the information content of lower sensitivity congeners. The covariance spectrum also provides a significant enhancement in the F1 digital resolution. The combination of HMBC and 1,1‐ADEQUATE spectra is shown here using strychnine as a model compound to derive structural information inherent to an n,1‐ADEQUATE spectrum with higher sensitivity and in a more convenient to interpret single quantum presentation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
963.
964.
965.
966.
In the catalytic cycle of [NiFe] hydrogenase the paramagnetic Ni-C intermediate is of key importance, since it is believed to carry the substrate hydrogen, albeit in a yet unknown geometry. Upon illumination at low temperatures, Ni-C is converted to the so-called Ni-L state with markedly different spectroscopic parameters. It is suspected that Ni-L has lost the "substrate hydrogen". In this work, both paramagnetic states have been generated in single crystals obtained from the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Evaluation of the orientation dependent spectra yielded the magnitudes of the g tensors and their orientations in the crystal axes system for both Ni-C and Ni-L. The g tensors could further be related to the atomic structure by comparison with the X-ray crystallographic structure of the reduced enzyme. Although the g tensor magnitudes of Ni-C and Ni-L are quite different, the orientations of the resulting g tensors are very similar but differ from those obtained earlier for Ni-A and Ni-B (Trofanchuk et al. J. Biol. Inorg. Chem. 2000, 5, 36-44). The g tensors were also calculated by density functional theory (DFT) methods using various structural models of the active site. The calculated g tensor of Ni-C is, concerning magnitudes and orientation, in good agreement with the experimental one for a formal Ni(III) oxidation state with a hydride (H(-)) bridge between the Ni and the Fe atom. Satisfying agreement is obtained for the Ni-L state when a formal Ni(I) oxidation state is assumed for this species with a proton (H(+)) removed from the bridge between the nickel and the iron atom.  相似文献   
967.
A method for the semi-quantitative colorimetric determination of chromium(VI) at sub μg/L levels after sorptive preconcentration is presented. The method is based on the retention of the reaction product (preformed in liquid phase) between Cr(VI) and diphenylcarbazide on membrane embedded cation exchange material. The color intensity of the membrane can be correlated to Cr(VI) concentrations in the range 0.05–50 μg/L (i.e. almost three orders of magnitude lower than the conventional spectrophotometric procedure) with a detection limit of about 10 ng/L (using 50 mL of sample volume). Due to the visual inspection mode and comparative color detection the precision is only 30–80% rsd which, however, is regarded as sufficient for screening purposes. Analysis of real samples including different kinds of waters and extracts of soil and filter collected airborne particulate matter demonstrated the applicability of the method for fast and species selective screening. Recovery experiments generally gave reasonably good results, yet also revealed the risk of the conversion of chromium species during sample pretreatment procedures due to redox reactions. Received: 1 December 1997 / Revised: 23 February 1998 / Accepted: 10 March 1998  相似文献   
968.
Bismuth(II) Chalcogenometallates(III) Bi2M4X8, Compounds with Bi24+ Dumbbells (M = Al, Ga and X = S, Se) The ternary bismuth(II) chalcogenometallates(III) Bi2M4X8 (with M = Al, Ga and X = S, Se) were synthesized from the binary chalcogenides M2X3 and Bi2X3 and elementary bismuth. All compounds are diamagnetic semiconductors with Eg (opt.) = 1.8–2.7 eV. The phases (except Bi2Al4Se8) are thermodynamically stable and decompose peritectically above 965–1020 K. Bi2Al4Se8 is metastable below 825 K and is obtained only by rapid quenching from T > 825 K. The isotypic compounds crystallize in a new tetragonal tP28 structure type (P4/nnc). The characteristic unit is the hitherto unknown clustercation Bi24+, with the mean bond length d(Bi–Bi) = 314.2 pm, the Raman frequency 102 cm–1 ≤ νs ≤ 108 cm–1, and the mean force constant of f = 0.68 N · cm–1. The Electron Localization Function, ELF, shows the covalent Bi–Bi bond, the lone electron pairs of the ψ-octahedrally coordinated Bi(II) cations, and the polar character of the Bi–X bonds.  相似文献   
969.
The reaction of K2S5, Cu, Gd, and S in a 2 : 1 : 2 : 4 molar ratio at 450 °C yields yellow-orange needle-like cuboids of the new quaternary compound KCuGd2S4. The crystal structure represents a novel three-dimensional structure type of quaternary rare earth chalcogenides with alkali metal. The compound crystallizes in the orthorhombic space group Cmcm (No. 63) with a = 3.9921(1) Å, b = 13.523(3) Å, c = 13.802(3) Å, V = 745.1(3) Å3, Z = 4. In the structure GdS6 octahedra and CuS4 tetrahedra are joined by common edges and corners forming corrugated layers parallel to (010). The GdS6 octahedra are connected via common edges in the third dimension thus leading to the formation of a three-dimensional tunnel structure. The potassium cations are confined within the pentagonal shaped channels and are surrounded by eight sulfide anions each.  相似文献   
970.
Chloroselenates with Di- and Tetravalent Selenium: 77Se-NMR-Spectra, Syntheses, and Crystal Structures of (PPh4)2SeCl6 · 2 CH2Cl2, (NMe3Ph)2SeCl6, (K-18-crown-6)2SeCl6 · 2 CH3CN, PPh4Se2Cl9, (NEt4)2Se2Cl10, (PPh4)2Se3Cl8 · CH2Cl2, and (PPh4)2Se4Cl12 · CH2Cl2 The title compounds were obtained from reactions of selenium and selenium tetrachloride with PPh4Cl, NEt4Cl, NMe3PhCl, or (K-18-crown-6)Cl in dichloromethane or acetonitrile. (PPh4)2Se3Cl8 · CH2Cl2 was also formed from GeSe, PPh4Cl and chlorine in acetonitrile. The 77Se-NMR spectra of the solutions show the presence of dynamical equilibria which, depending on composition, mainly contain SeCl2, SeCl4, Se2Cl2, SeCl62–, Se2Cl62–, and/or Se2Cl102–. Solutions of AsCl3 and (PPh4)2Se4 in acetonitrile upon chlorination with Cl2 or PPh4AsCl6 yielded (PPh4)2Se2Cl6, while (PPh4)2As2Se4Cl12 was the product after chlorination with SOCl2. According to the X-ray crystal structure analyses the ions SeCl62–, Se2Cl9, and Se2Cl102– have the known structures with octahedral coordination of the Se atoms. The structure of the Se3Cl82– ion corresponds to that of Se3Br82– consisting of three SeCl2 molecules associated via two Cl ions. (PPh4)2Se4Cl12 · CH2Cl2 is isotypic with the corresponding bromoselenate and contains anions in which three SeCl2 molecules are attached to a SeCl62– ion; there is a peculiar Se–Se interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号