首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4708篇
  免费   649篇
  国内免费   533篇
化学   3491篇
晶体学   44篇
力学   265篇
综合类   41篇
数学   500篇
物理学   1549篇
  2024年   18篇
  2023年   115篇
  2022年   137篇
  2021年   173篇
  2020年   217篇
  2019年   197篇
  2018年   177篇
  2017年   123篇
  2016年   222篇
  2015年   208篇
  2014年   195篇
  2013年   324篇
  2012年   351篇
  2011年   362篇
  2010年   245篇
  2009年   247篇
  2008年   294篇
  2007年   236篇
  2006年   227篇
  2005年   214篇
  2004年   197篇
  2003年   136篇
  2002年   123篇
  2001年   117篇
  2000年   124篇
  1999年   115篇
  1998年   91篇
  1997年   91篇
  1996年   102篇
  1995年   68篇
  1994年   76篇
  1993年   54篇
  1992年   52篇
  1991年   37篇
  1990年   43篇
  1989年   28篇
  1988年   25篇
  1987年   27篇
  1986年   19篇
  1985年   22篇
  1984年   13篇
  1983年   3篇
  1982年   7篇
  1981年   10篇
  1980年   7篇
  1979年   5篇
  1973年   3篇
  1972年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有5890条查询结果,搜索用时 0 毫秒
131.
A phase transition was observed at 63-69 GPa and room temperature in vanadium with synchrotron x-ray diffraction. The transition is characterized as a rhombohedral lattice distortion of the body-centered-cubic vanadium without a discontinuity in the pressure-volume data, thus representing a novel type of transition that has never been observed in elements. Instead of driven by the conventional s-d electronic transition mechanism, the phase transition could be associated with the softening of C44 trigonal elasticity tensor that originates from the combination of Fermi surface nesting, band Jahn-Teller distortion, and electronic topological transition.  相似文献   
132.
133.
134.
Flame-retarded poly(vinyl chloride) (PVC) materials have been prepared by using zinc ferrite (ZnFe2O4 (ZFO)) combined with magnesium hydroxide (Mg(OH)2 (MH)). The effects of these additives on the combustion and thermal degradation of PVC samples were studied using the limiting oxygen index test, the smoke density rating test, thermogravimetric–differential thermogravimetry, and the cone calorimeter test. The results showed that ZFO and MH were good synergists for improving the flame retardancy and smoke-suppressing of PVC/MH/ZFO blends. ZFO can significantly improve the maximum mass loss velocity in the first stage, and reduce the initial decomposition temperature and the decomposition range in the PVC/MH/ZFO blends. The char yield at 700 °C of flame-retarded PVC clearly decreased below theoretical values due to the cationic cracking reactions in the presence of ZFO. Furthermore, the PVC/10MH/10ZFO showed strong flame-retarding synergism since the decreased average heat release rate value. And the PVC/19MH/1ZFO presented a significant smoke-suppressing effect by the least average specific extinction area, peak smoke production rate, and total smoke produce. Moreover, the CO and CO2 production was increased because of a large amount of fragment of char residue in contact air in the presence of ZFO.  相似文献   
135.
We present a facile approach to make aptamer‐conjugated FRET (fluorescent resonance energy transfer) nanoflowers (NFs) through rolling circle replication for multiplexed cellular imaging and traceable targeted drug delivery. The NFs can exhibit multi‐fluorescence emissions by a single‐wavelength excitation as a result of the DNA matrix covalently incorporated with three dye molecules able to perform FRET. Compared with the conventional DNA nanostructure assembly, NF assembly is independent of template sequences, avoiding the otherwise complicated design of DNA building blocks assembled into nanostructures by base‐pairing. The NFs were uniform and exhibited high fluorescence intensity and excellent photostability. Combined with the ability of traceable targeted drug delivery, these colorful DNA NFs provide a novel system for applications in multiplex fluorescent cellular imaging, effective screening of drugs, and therapeutic protocol development.  相似文献   
136.
Porphyrin dyes containing the carbazole electron donor have been designed and optimized by wrapping the porphyrin framework, introducing an additional ethynylene bridge to extend the wavelength range of light absorption, and further suppression of the dye aggregation by introducing additional alkoxy chains. Application of a cosensitization approach results in improved current density (Jsc) and open‐circuit voltage (Voc) values, thus achieving the highest cell efficiency of 10.45 %. This work provides an effective combined strategy of molecular design and cosensitization for developing efficient dye‐sensitized solar cells (DSSCs). In addition, carbazole has been demonstrated to be a promising donor for porphyrin sensitizers.  相似文献   
137.
Beryllium fluorides are widely used in protein phosphorylation studies to get stable transition state analogs or near attack conformers, which has attracted much attention. BeF3? is one of the optimal phosphoryl (PO3?) analogs for its identical geometry and charge, and Mg2+ naturally participates in the phosphoryl binding in biological systems. In solutions, BeF3? coexists with other beryllium fluorides (BeF42?, BeF2 and BeF+) and magnesium fluorides, and there are equilibriums between these species. In this article, 19F NMR spectroscopy was applied to the investigation of the impact of magnesium(II) on beryllium fluorides. It has been found that when Mg2+ was introduced into the solutions, the chemical shifts, the intensities and the line widths of 19F signals of various beryllium fluoride complexes were changed. After ionic strength correction, these effects were remarkable only for BeF42? and BeF3?, especially BeF42?, when the concentration of the fluoride ion is relatively low. Mechanism of the effects is proposed which involves ion pair formation between Mg2+ and beryllium fluorides.  相似文献   
138.
Electrochemical sensing performance is often compromised by electrode biofouling (e.g., proteins nonspecific binding) in complex biological fluids; however, the design and construction of a robust biointerface remains a great challenge. Herein, inspired by nature, we demonstrate a robust polydopamine-engineered biointerfacing, to tailing zwitterionic molecules (i.e., sulfobetaine methacrylate, SBMA) through Michael Addition. The SBMA-PDA biointerface can resist proteins nonspecific binding in complex biological fluids while enhancing interfacial electron transfer and electrochemical stability of the electrode. In addition, this sensing interface can be integrated with tissue-implantable electrode for in vivo analysis with improved sensing performance, preserving ca. 92.0% of the initial sensitivity after 2 h of implantation in brain tissue, showing low acute neuroinflammatory responses and good stability both in normal and in Parkinson′s disease (PD) rat brain tissue.  相似文献   
139.
The development of new principles and techniques with high neuronal compatibility for quantitatively monitoring the dynamics of neurochemicals is essential for deciphering brain chemistry and function but remains a great challenge. We herein report a neuron-compatible method for in vivo neurochemical sensing by powering a single carbon fiber through spontaneous bipolar electrochemistry as a new sensing platform. By using ascorbic acid as a model target to prove the concept, we found that the single-carbon-fiber-powered microsensor exhibited a good response, high stability and, more importantly, excellent neuronal compatibility. The microsensor was also highly compatible with electrophysiological recording, thus enabling the synchronous recording of both chemical and electrical signals. The sensing principle could be developed for in vivo monitoring of various neurochemicals in the future by rationally designing and tuning the electrochemical reactions at the two poles of the carbon fiber.  相似文献   
140.
Optical chirality sensing has attracted a lot of interest due to its potential in high-throughput screening in chirality analysis. A molecular sensor is required to convert the chirality of analytes into optical signals. Although many molecular sensors have been reported, sensors with wide substrate scope remain to be developed. Herein, we report that the amide naphthotube-based chirality sensors have an unprecedented wide scope for chiroptical sensing of organic molecules. The substrates include, but are not limited to common organic products in asymmetric catalysis, chiral molecules with inert groups or remote functional groups from their chiral centers, natural products and their derivatives, and chiral drugs. The effective chirality sensing is based on biomimetic recognition in water and on effective chirality transfer through guest-induced formation of a chiral conformation of the sensors. Furthermore, the sensors can be used in real-time monitoring on reaction kinetics in water and in determining absolute configurations and ee values of the products in asymmetric catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号