首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2069篇
  免费   64篇
  国内免费   19篇
化学   1398篇
晶体学   8篇
力学   57篇
数学   287篇
物理学   402篇
  2022年   18篇
  2021年   14篇
  2020年   30篇
  2019年   19篇
  2018年   18篇
  2017年   18篇
  2016年   47篇
  2015年   28篇
  2014年   44篇
  2013年   87篇
  2012年   102篇
  2011年   107篇
  2010年   46篇
  2009年   49篇
  2008年   110篇
  2007年   130篇
  2006年   120篇
  2005年   96篇
  2004年   89篇
  2003年   81篇
  2002年   55篇
  2001年   40篇
  2000年   28篇
  1999年   21篇
  1997年   25篇
  1996年   41篇
  1995年   19篇
  1994年   18篇
  1993年   24篇
  1992年   22篇
  1991年   16篇
  1990年   18篇
  1989年   17篇
  1988年   25篇
  1986年   13篇
  1985年   24篇
  1984年   26篇
  1983年   25篇
  1982年   28篇
  1981年   19篇
  1980年   23篇
  1979年   29篇
  1978年   33篇
  1977年   31篇
  1976年   30篇
  1975年   32篇
  1974年   24篇
  1973年   24篇
  1971年   14篇
  1969年   14篇
排序方式: 共有2152条查询结果,搜索用时 171 毫秒
81.
Vibrational relaxation of the 6(1) level of S(1)((1)B(2u)) benzene is analyzed using the angular momentum model of inelastic processes. Momentum-(rotational) angular momentum diagrams illustrate energetic and angular momentum constraints on the disposal of released energy and the effect of collision partner on resultant benzene rotational excitation. A kinematic "equivalent rotor" model is introduced that allows quantitative prediction of rotational distributions from inelastic collisions in polyatomic molecules. The method was tested by predicting K-state distributions in glyoxal-Ne as well as J-state distributions in rotationally inelastic acetylene-He collisions before being used to predict J and K distributions from vibrational relaxation of 6(1) benzene by H(2), D(2), and CH(4). Diagrammatic methods and calculations illustrate changes resulting from simultaneous collision partner excitation, a particularly effective mechanism in p-H(2) where some 70% of the available 6(1)-->0(0) energy may be disposed into 0-->2 rotation. These results support the explanation for branching ratios in 6(1)-->0(0) relaxation given by Waclawik and Lawrance and the absence of this pathway for monatomic partners. Collision-induced vibrational relaxation in molecules represents competition between the magnitude of the energy gap of a potential transition and the ability of the colliding species to generate the angular momentum (rotational and orbital) needed for the transition to proceed. Transition probability falls rapidly as DeltaJ increases and for a given molecule-collision partner pair will provide a limit to the gap that may be bridged. Energy constraints increase as collision partner mass increases, an effect that is amplified when J(i)>0. Large energy gaps are most effectively bridged using light collision partners. For efficient vibrational relaxation in polyatomics an additional requirement is that the molecular motion of the mode must be capable of generating molecular rotation on contact with the collision partner in order to meet the angular momentum requirements. We postulate that this may account for some of the striking propensities that characterize polyatomic energy transfer.  相似文献   
82.
Right handed weak quark currents coupled to the usual left handed weak lepton current would be seen in inclusive antineutrino scattering on nuclei as a contribution at largey with the quark (not antiquark) structure function. We do not see such a term, and can therefore put an upper limit on the relative strengths of such right handed currents: \(\varrho ^2 = \frac{{\sigma _R }}{{\sigma _L }}< 0.009\) , 90% confidence. This measurement puts limits on the mixing angle of left-right symmetric models. In distinction to similar limits derived from muon decay or β decay, our limits are also valid if the right handed neutrino is heavy.  相似文献   
83.
Velocity map imaging has been used to measure the distributions of translational energy released in the dissociation of p-difluorobenzene-Ar van der Waals complexes from the 5(1), 3(1), 5(2), 3(1)5(1), 5(3), 3(2), and 3(2)5(1) states. These states span 818-3317 cm(-1) of vibrational energy and correspond to a range of energies above dissociation of 451-2950 cm(-1). The translational energy release (recoil energy) distributions are remarkably similar, peaking at very low energy (10-20 cm(-1)) and decaying in an exponential fashion to approach zero near 300 cm(-1). The average translational energy released is small, shows no dependence on the initial vibrational energy, and spans the range 58-72 cm(-1) for the vibrational levels probed. The average value for the seven levels studied is 63 cm(-1). The low fraction of transfer to translation is qualitatively in accord with Ewing's momentum gap model [G. E. Ewing, Faraday Discuss. 73, 325 (1982)]. No evidence is found in the distributions for a high energy tail, although it is likely that the experiment is not sufficiently sensitive to detect a low fraction of transfer at high translational energies. The average translational energy released is lower than has been seen in comparable systems dissociating from triplet and cation states.  相似文献   
84.
The 25% niobium substituted crystalline titanosilicate with the composition Na1.5Nb0.5Ti1.5O3SiO4·2H2O (Nb-TS) was synthesized under hydrothermal conditions. Its selectivity for radioactive 137Cs and 89Sr was compared with the TS, Na2Ti2O3SiO4·2H2O, having sitinakite topology. The Nb-TS shows significantly higher uptake value for 137Cs but lower for 89Sr than the TS. To investigate the origin of selectivity, the ion exchanged Cs+ and Sr2+ forms with the composition, CsxNaHyNb0.5Ti1.5O3SiO4·zH2O (x=0.1, 0.2 and 0.3, x+y=0.5 and z=1-2) and Sr0.2Na0.6H0.5Nb0.5Ti1.5O3SiO4·H2O, respectively, were structurally characterized from the X-ray powder diffraction data using the Rietveld refinement technique. Simultaneously the kinetics of 137Cs and 89Sr uptake was investigated for the NbV free and doped samples. While the Cs+ and Sr2+ exchanged form of Nb-TS and the Cs+ exchanged form of TS retain the symmetry of the parent compound, the Sr2+ exchanged form of TS undergoes a symmetry change. The differences in the uptake of Cs+ and Sr2+ result from the different coordination environments of cesium and strontium in the eight-ring channel, that result from various hydration sites in the tunnel. The origin of selectivity appears to arise from the higher coordination number of cesium or strontium. Other effects due to NbV substitution are reflected in the increase of both, the a- and c-dimensions and thus the unit cell volume, and the population of water vs. Na+ in the channel to charge-balance the Nb5+↔Ti4+ substitution.  相似文献   
85.
The insertion reaction of CS2 with Mg(NR2)2 (R= Et, iPr), MgR′2 (R′= Et, Ph) and R″MgBr (R″= iPr, Ph) respectively lead solid products, Mg(S2CNR2)2(THF)n ( 1 : R= Et, n=2; 2 : R= iPr, n=1), Mg(S2C′R)2(THF)2 ( 3 : ′R= Et, 4 : ′R= Ph), BrMg(S2C″R) (THF)3 ( 5 : ″R= iPr, 6 : ″R= Ph) in which the inserted carbon disulfides act as terminal chelating ligands. These compounds were characterized with 1H, 13C NMR, IR spectroscopy, mass spectrometry, elemental analyses, and X‐ray crystallography.  相似文献   
86.
A pH titration study shows that 6(A)-((2-(bis(2-aminoethyl)amino)ethyl)amino)-6(A)-deoxy-beta-cyclodextrin (betaCDtren) forms binary metallocyclodextrins, [M(betaCDtren)](2+), for which log(K/dm(3) mol(-)(1)) = 11.65 +/- 0.06, 17.29 +/- 0.05, and 12.25 +/- 0.03, respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+), where K is the stability constant in aqueous solution at 298.2 K and I = 0.10 mol dm(-)(3) (NaClO(4)). The ternary metallocyclodextrins [M(betaCDtren)Trp](+), where Trp(-) is the tryptophan anion, are characterized by log(K/dm(3) mol(-)(1)) = 8.2 +/- 0.2 and 8.1 +/- 0.2, 9.5 +/- 0.3 and 9.4 +/- 0.2, and 8.1 +/- 0.1 and 8.3 +/- 0.1, respectively, where the first and second values represent the stepwise stability constants for the complexation of (R)- and (S)-Trp(-), respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+). From comparisons of stabilities and UV-visible spectra, the binary and ternary metallocyclodextrins appear to be six-coordinate when M(2+) = Ni(2+) and Zn(2+) and five-coordinate when M(2+) = Cu(2+). The factors affecting the stoichiometries and stabilities of the metallocyclodextrins, are discussed and comparisons are made with related systems.  相似文献   
87.
The preparation of 6(A)-deoxy-6(A)-(6-(2-(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)acetamido)hexylamino)-alpha-cyclodextrin, 3, 6(A)-deoxy-6(A)-(6-(2-(1,4,7,10,13-pentaoxa-16-azacyclooctadecan-16-yl)acetamido)hexylamino)-alpha-cyclodextrin, 4, and their beta-cyclodextrin analogues, 5 and 6, are described. (1)H (600 MHz) ROESY NMR spectra of the C(6) substituted beta-cyclodextrins, 5 and 6, are consistent with the intramolecular complexation of their azacyclopentadecanyl- and azacyclooctadecanyl(acetamido)hexylamino substituents in the beta-cyclodextrin annulus in D(2)O at pD = 8.5 whereas those of their alpha-cyclodextrin analogues, 3 and 4 are not complexed in the alpha-cyclodextrin annulus. This is attributed to the monoazacoronand components of the substituents being able to pass through the beta-cyclodextrin annulus whereas they are too large to pass through the alpha-cyclodextrin annulus. However, the substituents of 3 and 4 are intermolecularly complexed by beta-cyclodextrin to form pseudo [2]-rotaxanes. Metallocyclodextrins are formed by 5 through complexation by the monoazacoronand substituent component for which log (K/dm(3) mol(-1))= <2, 6.34 and 5.38 for Ca(2+), Zn(2+) and La(3+), respectively, in aqueous solution at 298.2 K and I= 0.10 mol dm(-3)(NEt(4)ClO(4)).  相似文献   
88.
Split Hopkinson pressure bar experiments on soils are often carried out using a rigid steel confining ring to provide plane strain conditions, and measurements of the circumferential strain in the ring can be used to infer the radial stress on the surface of the specimen. Previous experiments have shown evidence of irregular electromagnetic interference in measurements of radial stress, which obscures the signals and impedes analysis. The development of robust constitutive models for soils in blast and impact events relies on the accurate characterisation of this behaviour, and so it is necessary to isolate and remove the source of interference. This paper uses an induction coil to identify the source of the anomalous signals, which are found to be due to induced currents in the gauge lead wires from the movement of magnetised pressure bars (martensitic stainless steel, 440C). Comparative experiments on sand and rubber specimens are used to show that the deforming soil specimen does not make a significant contribution to this activity, and recommendations are made on reducing electromagnetic interference to provide reliable radial stress measurements.  相似文献   
89.
Effects of High Temperature Storage (HTS) and bonding toward microstructure change of intermetallic compound (IMC) at the wire bonding interface of 3 types of bond pad (Al, AlSiCu and NiPdAu) were presented in this paper. Optical and electron microscope analyses revealed that the IMC growth rate of samples under 175 and 200 °C HTS increased in the order of Al > AlSiCu > NiPdAu. Besides, higher HTS and bonding temperatures also promoted higher IMC thickness. The compositional study showed that higher HTS and bonding temperature developed rapid interdiffusion in bonding interface. In the mechanical ball shear test, a decrease of the shear force of Al and AlSiCu bond pads after 500 h HTS was believed due to poorly developed IMC at bonding interface. On the other hand, shear force degradation at 1000 h was due to excessive growth of IMC that in turn causes the formation of defects. For NiPdAu bond pad, increasing trend of shear force with HTS duration at 175 °C implied a good reliability of the Cu wire bonding. The rapid microscopic inspection on Cu wired Al bond pad under HTS 175 °C showed the IMC development from the periphery to the center of the ball bond. However, after 500 h voids started to develop until the crack was observed at 1000 h.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号